主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2008, Vol. 16 ›› Issue (2): 122-127.

• 论文 • 上一篇    下一篇

基于小波域隐马尔可夫模型的时间序列分析-平滑、插值和预测

张冬青1, 韩玉兵2, 宁宣熙1, 刘雪妮1   

  1. 1. 南京航空航天大学经济与管理学院 江苏南京210016;
    2. 南京理工大学电光学院 江苏南京210094
  • 收稿日期:2007-03-23 修回日期:2008-03-25 出版日期:2008-04-30 发布日期:2008-04-30
  • 作者简介:张冬青(1971- ),女(汉族),江苏泗洪人,南京航空航天大学经济与管理学院,博士研究生,研究方向:统计信号处理、时间序列预测.
  • 基金资助:

    国家自然科学基金资助项目(70571037)

Time Series Analysis Based on Wavelet-Domain HMM-Smoothing, Interpolation and Prediction

ZHANG Dong-qing1, HAN Yu-bing2, NING Xuan-xi1, LIU Xue-ni1   

  1. 1. College of Economics & Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. School of Electronic Engineering & Optoelectronic Techniques, Nanjing University of Science & Technology, Nanjing 210094, China
  • Received:2007-03-23 Revised:2008-03-25 Online:2008-04-30 Published:2008-04-30

摘要: 提出一种基于小波域隐马尔可夫模型的时间序列分析方法.首先介绍了离散小波变换;并针对小波系数进行统计建模,分别讨论了单个小波系数的混合高斯模型、不同尺度小波系数之间的隐马尔可夫树结构、模型训练及似然计算等问题;其次,提出了关于时间序列插值、平滑和预测的统一数学模型,并运用极大后验概率估计和贝叶斯原理,将小波域隐马尔可夫模型作为先验知识给出了一种分析时间序列的新方法;然后,详细推导了时间序列重建问题的Euler-Lagrange方程及对数似然的导数计算,将时间序列的插值、平滑和预测归结为一个简单线性方程的求解;最后通过期望极大化(EM)算法和共扼梯度算法进行交替迭代来计算小波域隐马尔可夫模型参数和重建时间序列.实验结果表明该方法在经济领域时间序列分析中的有效性.

关键词: 时间序列, 小波变换, 隐马尔可夫模型, EM算法, 共扼梯度算法

Abstract: In this paper,a method for time series,based on wavelet-domain hidden Markov model(WHMM),is proposed.In the first,after introduction of discrete wavelet transform briefly,we use the Gaussian mixture model(GMM) to describe the non-Gaussian feature of an individual wavelet coefficient.To capture the key statistical dependency and persistence property of the joint probability density in the whole wavelet coefficients of real-world signals,the hidden Markov tree(HMT) structure is adopted.The mo del trai山ng and the likelihood determination associated with the WHMM have been thoroughly studied.Then,from the Bayesian viewpoint and under the maximum a posteriori(MAP) probability estimation framework,we develop a model that deals with smoothing,interpolation and prediction of time series using WHMM as the prior knowledge.Thirdly,the Euler-Lagrange equation of the time series and the differential of log-likelihoodfunction have been deduced in detail by means of orthogonal wavelet transform and differential principle.Finally,a concise linear equation about smoothing,interpolation and prediction of time series is obtained and the expectation maximization(EM) algorithm and conjugate gradient(CG) algorithm are adopted to compute the WHMM parameters and reconstruct the time series alternately.Experimental results are so pleasant that WHMM can be applied in the time series of economic sphere.

Key words: time series, wavelet transform, hidden markov model, expectation maximization algorithm, conjugate gradient algorithm

中图分类号: