主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2008, Vol. 16 ›› Issue (2): 132-139.

• 论文 • 上一篇    下一篇

缺失数据下ARMA(1, 1)模型的估计方法

田萍, 张屹山   

  1. 吉林大学商学院吉林大学数量经济研究中心 辽宁吉林130012
  • 收稿日期:2007-06-19 修回日期:2008-03-24 出版日期:2008-04-30 发布日期:2008-04-30
  • 作者简介:田萍(1976- ),女(汉族),辽宁省人,吉林大学商学院应用经济研究所讲师,博士,研究方向:数量经济学.
  • 基金资助:

    社科项目资助(07BJY168)

Estimation Method of ARMA(1, 1) Model with Missing Data

TIAN Ping, ZHANG Qi-shan   

  1. Basiness School of Jilin University, Jilin 130012, China
  • Received:2007-06-19 Revised:2008-03-24 Online:2008-04-30 Published:2008-04-30

摘要: 近几十年以来,国际上在对"风险的处理和效益的优化"这两个现代金融学的中心议题的分析和处理过程中,金融时间序列的计量学模型及其相应的分析越来越起到非常重要的作用.对于线性时间序列模型如AR(p),MA(q),ARMA(p,q)等,已经为我们所熟知.具体到模型的参数估计在数据没有缺失时,也有很多经典的办法,如最小二乘法、极大似然法等.但是当数据在中间有缺失时,上述方法将无能为力.本文将详细讨论在数据有缺失时的ARMA(1,1)模型,即Zt=αZt-1t-βεt-1的参数的估计方法.

关键词: 缺失数据, ARMA(1,1)模型, 似然函数, EM算法

Abstract: In recent decades,when analysis and process two modern financial issues of "risk management and effectiveness of the optimization" in the international community,the financial time series model and the measurement of the growing corresponding play a very important role.The linear time-series models Have been known such as the AR(p),MA(q),ARMA(p,q).There are a lot of classical methods such as the least-squares method and the maximum likelihood method can estimate parameters of many models except missing data in the middle,when the above methods will be powerless.This article will discuss in detail the data deletion ARMA(1,1) model,that is,the parameter estimation methods of Zt=αZt-1t-βεt-1.

Key words: missing data, ARMA(1,1) model, likelihood function, EM algorithm

中图分类号: