主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2007, Vol. 15 ›› Issue (6): 52-59.

• 论文 • 上一篇    下一篇

电子商务下基于改进两阶段算法的有时间窗车辆调度优化

王晓博, 李一军   

  1. 哈尔滨工业大学管理学院, 黑龙江哈尔滨150001
  • 收稿日期:2007-02-01 修回日期:2007-11-14 出版日期:2007-12-31 发布日期:2007-12-31
  • 作者简介:王晓博(1973- ),男(汉族),黑龙江省哈尔滨人,哈尔滨工业大学管理学院博士研究生,讲师,研究方向:物流系统优化、电子商务等.
  • 基金资助:

    西部交通科技项目(200439800063);黑龙江省科技攻关项目(GB05D202-3);黑龙江省教育厅项目(11521213)

Research on Optimization of VRPTW Based on Improved Two Phase Algorithm under Electronic Commerce

WANG Xiao-bo, LI Yi-jun   

  1. School of Management, Harbin Institute of Technology, Harbin 150001, China
  • Received:2007-02-01 Revised:2007-11-14 Online:2007-12-31 Published:2007-12-31

摘要: 为满足电子商务下的物流配送需求,将传统车辆调度模型进行修改,将目标函数改为基于费用最小,在约束条件中增加时间约束、货物容积约束、车辆最大工作时间、多种车型、载重量限制和最大行驶距离等,以提高模型的适用性和通用性。由于有时间窗的车辆调度问题是NP难问题,采用改进两阶段算法进行求解。即第一阶段用模糊分层聚类法将客户群分成若干区域,在每个区域又用扫描算法分解成若干符合约束条件的小规模子集;第二个阶段对各个分组内客户点,就是一个个单独TSPTW模型的线路优化问题,因此,采用改进混合遗传算法进行优化求解,最后的算例仿真表明了算法的有效性和可行性。

关键词: 有时间窗的车辆调度问题, 模糊分层聚类, 混合遗传算法, 改进两阶段算法

Abstract: In order to satisfy logistics distribution demand under electronic commerce,we modify the traditional vehcile scheduling model,amend objective function based on expense minimization,and add time restriction,goods capacity restriction,maximum vehicle working time,multi-types of vehicles,load capacity restriction,maximum running distance and so on into the rest riction couditions,so as toim prove the applicability and universality of model Since vechile scheduling problem is NP puzzle,we get the optimal solution by improved two-phase algorithm That is,in the first phase,the customer group is divided into some regions through fuzzy hierarchy clustering analysis method,and each region is also divided into some small scale sub-groups satisfying some restiction conditions through scanning algorithm. In the second phase,we optimize the line of each single TSPTW model according to to cust omer dot in each group. Therefore,improved hybrid genetic algorithm is used to get the optimal solution. Finally,computational tests demonstrate the efficiency and feasibility of our algorithm.

Key words: VRPTN(vehicle routing problem with time window), fuzzy hierarchy clustering method, hybrid genetic algorithm, improved two phase algorithm

中图分类号: