主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2009, Vol. 17 ›› Issue (6): 130-138.

• 论文 • 上一篇    下一篇

基于MDE资源分时段与活动平移并行的均衡优化

庞南生1, 纪昌明2, 乞建勋1   

  1. 1. 华北电力大学工商管理学院, 北京 102206;
    2. 华北电力大学可再生能源学院, 北京 102206
  • 收稿日期:2009-03-02 修回日期:2009-10-20 出版日期:2009-12-30 发布日期:2009-12-30
  • 作者简介:庞南生(1962- ), 男(汉族), 安徽安庆人, 华北电力大学工商管理学院副教授, 博士, 研究方向:工程项目管理、智能优化理论、决策理论与方法、进度管理.
  • 基金资助:

    国家自然科学基金资助项目(70671040);教育部博士点基金资助项目(20050079008)

Leveling Optimization of Parallel Adjustment to Resource Divided Period and Work Translation Based on Modified Differential Evolution

PANG Nan-sheng1, JI Chang-ming2, QI Jian-xun1   

  1. 1. College of Business Management, North China Electric Power University, Beijing 102206, China;
    2. College of Renewable Energy, North China Electric Power University, Beijing 102206, China
  • Received:2009-03-02 Revised:2009-10-20 Online:2009-12-30 Published:2009-12-30

摘要: 本文以资源均方差作为衡量工程网络计划资源均衡性的评价函数,基于非关键活动资源可以分段使用的状态,提出了对非关键活动机动时间及其各个时段的资源强度同时动态并行调整的优化策略,以弥补非关键活动平移幅度因受时差的限制而对均衡效果产生的影响,并以此构建了网络计划资源均衡优化模型;并针对网络计划均衡优化模型是一多峰值的非线性优化函数的特点,对基于种群的全局搜索策略的差分进化算法进行了改进和进行全局最优解的寻优,以优化各个非关键活动起止时间,求出各个非关键活动最优的安排;最后,通过实例分析,并与其它算法进行了对比分析,验证明了所提出的均衡优化方法的优越性和实用性.

关键词: 资源均衡优化, 改进差分进化算法, 全局最优解, 资源强度

Abstract: The mean square variance of resource is taken as an evaluation function in this paper to measure the balance of network planned resource Based on the resource intensity of non-critical work, which is used in different period of time, a strategy of dynamically parallel adjusting the flexible time of non-critical work and the associated resource intensity in each of the period in the same time is proposed, and an optimization model of network planned resource is also established Moreover, aiming at the feature of optimization model of network planning, which is a nonlinear optimal function with multi-peak values, global optimal solution is searched by using the modified differential evolution, which is based on the global searching of population, so that starting and ending times of every norr critical work can be optimized, and the optimal arrangement can be also obtained.At last, the superiority and the practicality of the new proposed optimization method are proved by doing case study and being compared with other algorithms.

Key words: resource leveling optimization, modified differential evolution(M D E), global optimal solution, resource intensity

中图分类号: