主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2010, Vol. 18 ›› Issue (6): 17-25.

• 论文 • 上一篇    下一篇

基于状态空间的贝叶斯跳跃厚尾金融随机波动模型研究

朱慧明1, 黄超1, 郝立亚1, 虞克明2, 李素芳1   

  1. 1. 湖南大学工商管理学院, 湖南 长沙 410082;
    2. Brunel大学数学系, 伦敦 UB8 3PH
  • 收稿日期:2009-12-03 修回日期:2010-10-23 出版日期:2010-12-30 发布日期:2010-12-30
  • 作者简介:朱慧明(1966- ),男(汉族),湖南湘潭人,湖南大学工商管理学院,教授,博士生导师,研究方向:计量经济模型、贝叶斯预测与决策分析
  • 基金资助:

    国家自然科学基金资助项目(70771038,71031004);教育部留学回国人员科研启动基金项目(教外司留[2010]609);湖南省自然科学基金创新群体项目(09JJ702);教育部长江学者与发展创新团队项目

Bayesian Analysis of Heavy-tailed Financial Stochastic Volatility Models with Jumps Based on its State Space

ZHU Hui-ming1, HUANG Chao1, HAO Li-ya1, YU Ke-ming2, LI Su-fang1   

  1. 1. College of Business Administration, Hunan University, Changsha 410082, China;
    2. Department of Mathematical Science, Brunel University, London UB8 3PH, UK
  • Received:2009-12-03 Revised:2010-10-23 Online:2010-12-30 Published:2010-12-30

摘要: 针对金融市场中跳跃特征的刻画问题,提出了贝叶斯跳跃厚尾随机波动模型。通过随机波动模型的结构分析和状态空间转换,设计了模型参数估计的MCMC算法,利用Kalman滤波和高斯模拟平滑方法估计模型的潜在波动,运用贝叶斯因子对随机波动类模型进行比较分析,并利用中国和美国的股市收益数据进行实证分析。研究结果表明:在刻画中、美两国股票市场的波动特征方面,跳跃厚尾随机波动模型要明显优于厚尾随机波动模型和标准随机波动模型,并且金融危机背景下的中国和美国股票市场都具有明显的波动持续性以及跳跃特征。

关键词: 随机波动, 状态空间, Kalman滤波, 跳跃过程, 贝叶斯因子

Abstract: This paper proposes the Bayesian heavy tailed stochastic volatility models with jumps to describe the jumps characteristics in financial market In terms of the volatility models' structure and their state space transition,we construct a Markov Chain Monte Carlo algo rithm to estimate parameters,utilize Kalman filters and Gaussian simulation smoother to analyze the latent volatility implied in models,and compare volatility models through Bayesian factors.Then the suggested approach is applied to analyze the volatility character of the stock market in China and America.The results show that the jump character is significant both in China and America stock market,and the heavy-tailed stochastic volatility model with jumps is superior to the standard volatility model in depicting volatility character.

Key words: stochastic volatility, state space, Kalman Filter, jump process, bayesian factor

中图分类号: