主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学

• 论文 • 上一篇    下一篇

基于Kullback-Leibler信息量的最优ARMA模型组选择与组合预测研究

赵昕东1, 钱国骐2   

  1. 1. 华侨大学数量经济研究院, 福建 厦门 361021;
    2. 墨尔本大学数学与统计系, 澳大利亚 墨尔本 VIC 3010
  • 收稿日期:2009-04-09 修回日期:2011-07-25 出版日期:2011-10-30 发布日期:2011-10-30
  • 作者简介:赵昕东(1968- ),男(汉族),吉林省长春市人,华侨大学数量经济研究院常务副院长,研究员,博士生导师,博士,研究方向:统计学、计量经济学、宏观经济模型
  • 基金资助:
    福建省自然科学基金项目(2009J01312);中央高校基本科研业务费国家自然科学基金培肓计划(JB-ZR1135);2011年福建省新世纪优秀人才支持计划

The Best ARMA Model Group Selection and Combined Forecasting Based on Kullback-Leibler Information

ZHAO Xin-dong1, QIAN Guo-qi2   

  1. 1. Institute of Quantitative Economics, Huaqiao University, Xiamen 361021, China;
    2. Department of Mathematics and Statistics, The University of Melbourne, Melbourne VIC 3010, Australia
  • Received:2009-04-09 Revised:2011-07-25 Online:2011-10-30 Published:2011-10-30

摘要: ARMA模型在管理科学领域有着广泛的应用,组合预测可以提高ARMA模型的预测效果,但是如何选择最优模型组是十分重要但尚未解决的问题。本文提出了一个基于Kullback-Leibler信息量(简称K-L信息量)的最优模型组选择方法确定那些与最优模型无显著差异的模型形成最优模型组。最后,本文通过模拟数据比较了基于最优模型组的组合预测与根据AIC准则确定的单个最优模型的预测效果,组合预测效果要优于单模型预测。

关键词: Kullback-Leibler信息量, 最优模型组, 组合预测

Abstract: ARMA models are widely used in the field of management science.Combined forecasting can impove the effect of forecasting.However,how to select the best model group is very important but not well done.In this paper we propose a best model group selection method based on the Kullback-Leibler (K-L) information.First we measure the so called K-L distances between every candidate model and the true model using the K-L information,and then derive the confidence intervals of the gap between the K-L distence of each candidate model and the best model using the central limitation theory.Furthermore based on the confidence intervals we identify agroup of models,which are not different significantly with the best model,as the best model group.Finally we compare the forecast ability of the best model group and the best model.The results show that the proposed method can improve the forecast with high probability when the best model is not the true model.

Key words: Kullback-Leibler information, the best model group, combined forecast

中图分类号: