朱帮助1,2, 张秋菊1,2, 邹昊飞3, 魏一鸣2
ZHU Bang-zhu1,2, ZHANG Qiu-ju1,2, ZOU Hao-fei3, WEI Yi-ming2
摘要: 电子商务客户流失预测是一种典型的高维、非线性、数据不平衡问题,传统的方法已很难提高其预测精度。本文将自组织数据挖掘方法(SODM)引入电子商务客户流失预测,提出一种基于客观系统分析(OSA)和数据分组处理(GMDH)网络集成的电子商务客户流失预测模型。首先利用OSA算法自动选择出重要的电子商务客户流失关键属性,然后将训练样本送入GMDH网络进行学习与训练,进而对测试样本客户流失状态进行预测。为了提高预测精度,本文还利用向上采样法进行数据平衡化,使得流失类和非流失类客户数量大致相等。应用该模型对某网上商场客户流失状态进行预测,并将预测结果与神经网络、SVM等方法得到的结果进行了比较,验证了该模型的有效性及实用性。
中图分类号: