主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2008, Vol. 16 ›› Issue (4): 18-23.

• 论文 • 上一篇    下一篇

基于EVT-BM-FIGARCH的动态VaR风险测度

肖智1, 傅肖肖1, 钟波2   

  1. 1. 重庆大学经济与工商管理学院 重庆 400030;
    2. 重庆大学数理学院 重庆 400030
  • 收稿日期:2007-06-27 修回日期:2008-06-10 出版日期:2008-08-31 发布日期:2008-08-31
  • 作者简介:肖智(1961- ),男(汉族),重庆北碚人,重应大学经济与工商管理学院,系主任、博士生导师,研究方向:金融信息分析与风险投资、信息经济与数量经济分析.

Dynamic VaR Risk Measures Based on EVT-BM-FIGARCH

XIAO Zhi1, FU Xiao-xiao1, ZHONG Bo2   

  1. 1. College of Economics and Business Administration, Chongqing University, Chongqing 400030, China;
    2. College of Mathematics and Science, Chongqing University, Chongqing 400030, China
  • Received:2007-06-27 Revised:2008-06-10 Online:2008-08-31 Published:2008-08-31

摘要: 对金融资产回报,用FIGARCH模型捕捉波动的异方差性和长期记忆性的同时,将回报序列转化为标准残差序列、通过用EVT-BM方法拟合标准残差的尾部分布来处理回报序列的厚尾性,建立了金融风险度量模型——基于EVT-BM-FIGARCH的动态VaR模型。并用该模型对上证综合指数进行实证分析,结果表明模型能够更精确、合理地度量上证综合指数回报的VaR风险。

关键词: EVT-BM, FIGARCH, 厚尾, 长期记忆, VaR

Abstract: This article uses FIGARCH model to handle the heteroscedasticity and long memory behavior in return's volatility.At the same time,it transfers return series into standard residuals and uses EV T-BM method to capture the fat tails of standard residuals Thus it deals with return's fat-tails trait in this way.Then,the paper constructs a dynamic VaR risk measure based on EV T-BM-FIGARCH and applies it to daily returns of composite index of Shanghai stock market.The empirical analysis indicates that the risk measure can describe the index return's dynamic VaR risk more exactly and reasonably.

Key words: EV T-BM, FIGARCH, fat tails, long memory, VaR

中图分类号: