主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2009, Vol. 17 ›› Issue (2): 42-51.

• 论文 • 上一篇    下一篇

基于集成支持向量机的企业财务业绩分类模型研究

蒋艳霞1, 徐程兴2   

  1. 1. 中国人民大学商学院, 北京100872;
    2. 北京大学光华管理学院, 北京100871
  • 收稿日期:2008-07-12 修回日期:2009-02-05 出版日期:2009-04-30 发布日期:2009-04-30
  • 作者简介:蒋艳霞(1975- ).女(汉族),山东莘县人.中国人民大学商学院博士后,研究方向:公司财务.

Analysis of Classification Model of Companies’ Financial Performance Based on Integrated Support Vector Machine

JIANG Yan-xia1, XU Cheng-xing2   

  1. 1. School of Business, Renmin University of China, Beijing 100872, China;
    2. Guanghua School of Management, Peking University, Beijing 100871, China
  • Received:2008-07-12 Revised:2009-02-05 Online:2009-04-30 Published:2009-04-30

摘要: 要想正确预测公司财务业绩,首先必须选择合适的预测方法。现有文献所采用的财务业绩预测模型普遍存在着泛化能力不强的问题。本文提出用支持向量机方法来预测我国上市公司的财务业绩。为了提高预测准确率,本文还用AdaBoost算法对支持向量机进行了改进(集成支持向量机)。在支持向量机核函数的选择上,我们采用了实验法,即对每个核函数及其相关参数的预测效果都进行了测算,以期找出最适用的预测模型。实证结果表明,径向基核函数(rbf)的效果最好,支持向量机方法预测准确率远远高于其它方法。

关键词: 财务业绩, 支持向量机, AdaBoost算法

Abstract: In order to forecast the corporate finance performance,we must choose the appropriate forecast method.The forecast model used widely lacks generalization ability.In this paper,we propose a modified version of support vector machines (called AdaBoost support vector machine) to forecast financial perform ance of Chinese listed companies.In the choice of kernel function of support vector machine,forecast re sults are measured for each kernel function and its associated parameters with a view of identifying the most appropriate forecasting model.The experiment results show that our AdaBoost-support vector ma chine model with rbf kernel function compares favorably to probabilistic neural network and decision tree model.We also construct sub-industry financial performance prediction model for different industry.We find that the test accuracy of different industry varies and estimating separate models for each industry do not result in models with a higher predictive accuracy than the global model.

Key words: financial performance, support vector machine, adaBoost algorithms

中图分类号: