主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2008, Vol. 16 ›› Issue (1): 131-142.

• 论文 • 上一篇    下一篇

交易量持续期的模型选择:密度预测方法

李广川, 刘善存, 邱菀华   

  1. 北京航空航天大学经济管理学院 北京100083
  • 收稿日期:2007-03-15 修回日期:2008-01-17 出版日期:2008-02-28 发布日期:2008-02-28
  • 作者简介:李广川(1982- ),男(汉族),河北人,博士研究生,研究方向:市场微观结构与金融计量学.
  • 基金资助:

    全国优秀博士论文作者专项基金(200466);国家自然科学基金资助项目(70671006)

Selection of Volume Duration Models:Density Forecast Method

LI Guang-chuan, LIU Shan-cun, QIU Wan-hua   

  1. School of Economics and management, Beihang University, Beijing 100080, China
  • Received:2007-03-15 Revised:2008-01-17 Online:2008-02-28 Published:2008-02-28

摘要: 运用密度预测方法,考虑残差项分别服从威布尔、伽玛和极值分布情况下,选取在上海证券交易所上市的浦发银行和G中海两支股票的高频交易数据,对拟合交易量持续期的对数自回归条件持续期(LOG-ACD)模型、随机条件持续期(SCD)模型和马尔科夫转换自回归条件持续期(MSACD)模型进行了评价比较研究。研究表明,绝大部分模型捕捉到了交易量持续期的聚集性特征;MSACD模型无论在模型样本内拟合还是模型样本外预测方面,均优于LOG-ACD模型和SCD模型。

关键词: 密度预测, LOG-ACD模型, SCD模型, MSACD模型

Abstract: Under the condition that the residual item follows Weibull,gamma and Burr distribution respectively and using high-frequency transaction data of two stocks including Pufa bank and G Zhonghai in Shanghai security market,we evaluate and compare the performances of LOGAutoregressive Conditional Duration(LOC-ACD) model,Stochastic Conditional Duration(SCD) model and Markov Switching Autoregressive Conditional Duration(MSACD) model of volume duration using density forecast method. We condude that most models capture the characteristic of cluster of volume duration. We also evidence that MSACD model outperforms LOGACD model and SCD model in abilities of both in-sample fitness and out-sample forecast.

Key words: density forecast LOGA CD model, SCD model, MSACD model

中图分类号: