主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2001, Vol. ›› Issue (6): 15-20.

• 论文 • 上一篇    下一篇

二重趋势性季节型电力负荷预测组合灰色神经网络模型

牛东晓, 乞建勋, 邢棉   

  1. 华北电力大学经济管理系, 保定, 071003
  • 收稿日期:2001-03-05 出版日期:2001-12-28 发布日期:2012-03-06
  • 基金资助:
    国家自然科学基金资助项目(50077007);国家电力公司重点学科基金资助项目(A99B03)

Combined Optimum Gray Neural Network Model of the Seasonal Powerload Forecasting with the Double Trends

NIU Dong-xiao, QI Jian-xun, XING Mian   

  1. Department of Economics and Management, North China Electric Power University, Baoding 071003, China
  • Received:2001-03-05 Online:2001-12-28 Published:2012-03-06

摘要: 对于具有增长和波动二重趋势性的季节型电力负荷,首次提出了季节型负荷预测的组合优化灰色神经网络模型,研究了同时考虑两种(非线性)趋势的复杂季节型负荷预测问题,说明了此优化模型分别优于两种单一发展趋势负荷预测模型,给出了电力负荷预测的应用实例,为季节型电力负荷预测提供了一种新的、有效的方法。

关键词: 电力负荷预测, 季节型负荷, 组合灰色神经网络, 二重趋势性

Abstract: For the seasonal power load forecasting with the double trends of increasing and fluctuating,it is proposed first for the combined optimum gray neural network model of seasonal load forecasting We study the problem of complex seasonal load forecasting with double nonlinear trends The optimum model is better than the tow load forecasting models with one development trend An application case of the power load forecasting is given We provide a new and effective method for the seasonal power load forecasting.

Key words: power load forecasting, seasonal load, combined gray ANN, double trends

中图分类号: