[1] 陈永庆,王浣尘.期权理念在风险投资决策中的应用[J].管理工程学报,2001,15(2):67-69. [2] 齐安甜,张维.基于成长期权的企业价值评估模型[J].管理工程学报,2003,17(1):65-69. [3] Derman, Emanuel and Iraj Kani. Riding on the Smile [J].Risk, 1994,7: 32-39. [4] Derman, E.and Zou, J.Strike-Adjusted Spread: A New Metric For Estimating The Value Of Equity Option' [J].Goldman Sachs Quantitative Strategies Research Notes,July, 1997. [5] Rubinstein, Mark. Implied binomial trees[J]. Journal of Finance, 1994,49:771-818. [6] Martha Amrsm,Nalin Kulatilaka.实物期权:不确定性环境下的战略投资管理.张维译[M].机械工业出版社,2001. [7] Yisong Sam Tian. A trinomial option pricing model dependent on Skewness and Kurtosis [J]. International Review of Economics & Finance, 1998,7(3):315. [8] Massimb, M.. Reconstruction of the risk-neutral distribution of stock prices [J]. Investment Section, Harris Bank,Chicago, IL, December 30,1992. [9] Buchen, P. W. and Kelly, M.. The maximum entropy distribution of an asset inferred from option prices[J]. Journal of Financial and Quantitative Analysis, 1996,31 (1): 143-59. [10] Ramaprasad Bhar and Carl Chiarella. Expectations of monetary policy in Australia implied by t he probability distribution of interest rate derivatives[J]. The European Journal of Finance, 2000,6:113-125. [11] Cozzolino, J. M. , Zahner, M. J.. The maximum entropy distribution of the future market price of a stock[J]. Operations Research, 1973. [12] L. Gulko. The entropy pricing theory[D]. Ph. D. Dissertation, Yale School of Management, 1998. [13] Fritelli,M.. The minimal entropy martingale measure and the valuation problem in incompletemarkets [J]. Mathematical Finance, 2000,10. [14] Stutzer, M.. A simple nonparametric approach to derivative security valuation[J]. Journal of Finance, 1996,16,33-52. [15] Robertson,John C., Tallman etc. Forecasting Using Relative Entropy [Z]. Working Paper Series (Federal Reserve Bank of Atlanta) ,2002,22:1-32. [16] Csiszár, I., I-Divergence Geometry of Probability Distributions and Minimization Problems [J]. The Annals of Probability, 1975,3:146-158. [17] Stutzer, M.. Simple Entropic Derivation of a Generalized Black-Scholes Option Pricing Model [J]. Entropy, 2000,2:70-77. |