主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2004, Vol. ›› Issue (6): 68-72.

• 论文 • 上一篇    下一篇

动态全参数自调整BP神经网络模型的改进

李晓峰, 徐玖平   

  1. 四川大学工商管理学院 成都 610064
  • 收稿日期:2003-03-20 修回日期:2004-06-20 出版日期:2004-12-28 发布日期:2012-03-07
  • 基金资助:
    国家自然科学基金资助项目(70171021);四川大学哲学、社科研究青年启动项目资助.

The Improvement of Forecasting Model Based on BP Neural Network of Self-Adjusted All Parameters

LI Xiao-feng, XU Jiu-ping   

  1. School of Business and Administration, Sichuan University, Chengdu 610064, China
  • Received:2003-03-20 Revised:2004-06-20 Online:2004-12-28 Published:2012-03-07

摘要: 针对BP网络存在的缺点,有多种改进方法。本文在文献[14]的基础上,从算法和网络结构设计方面又进行了综合改进,这不仅加快了网络的收敛速度,而且优化了网络的拓扑结构,从而增强了BP神经网络的适应能力。将新改进的BP网络应用于我国能源消费预测,取得了令人满意的效果。

关键词: 人工神经网络, BP算法, 网络结构, 自组织算法

Abstract: In accordance with the shortcoming that BP neural network exists,there are many kinds of improvement methods.This paper has carried on the synthetical improvement at the aspect of algorithm and the network structure design on the foundation of document[3] work.It not only improves the rate of studying but also improves the network structure,and increases the adaptive ability of BP neural network.Application to forecasting China’s energy consumption has acquired good impact.

Key words: artificial neural networks, BP algorithm, network structure, GMDH

中图分类号: