[1] James W.Friedman.Game theory with application to economics[M].New York:Oxford University Press,1986:148-160. [2] 罗利,鲁若愚.产学研合作对策模型研究[J].管理工程学报,2000,14(2):1-4. [3] M.Voorneveld.Pareto-optimal security strategies as minimax strategies of a standard matrix game [J].Journal of Optimization Theory and Applications,19.99,102 (1):203-210. [4] 钱颂迪.运筹学[M].北京:清华大学出版社,1990,388-420. [5] 谢识予.经济博弈论[M].上海:复旦大学出版社,2002,41-50. [6] Von Neumann J,Morgenstern O.Theory of Games and Economic Bahaviour[M].Princeton University Press,Princeton,1974. [7] Gambarelli G.Power indices for political and financial decision making [J].Annals of Operations Research,1994,51(1):165-173. [8] Zhang Shenkai.ZS-value for random coalition games[J].Chinese Science Bulletin,1989,34(15):1236-1242. [9] Nash J F.Noncooperative games[J].Annals of Mathematics,1951,54:286-295. [10] 乔晗,高红伟,程凌.用弱优超的概念改造NTU对策中的核心[J].青岛大学学报(自然科学版),2004,17(专刊):63-65. [11] 王全文,刘振航,吴振奎.优超方法解矩阵对策问题失解的补救[J].天津商学院学报,2003,23(6):1-3. [12] 姜殿玉.相关优超平衡的一致性公理化[J].河北科技大学学报,2000,21(3):24-27. [13] 陈斌.矩阵对策中纯策略可被优超的充要条件[J].南通职业大学学报,1999,13(1):73-75. [14] 郭文革,王浣尘,陈珽.离散价值结构下具有优超策略激励相容的二人协商机制设计研究[J].控制与决策,1996,11(3):408-411. [15] 马德明,万新敏.灰矩阵对策[J].空军雷达学院学报,2000,14(4):32-33. [16] 张子方,黄正良,于朝江.模糊矩阵对策[J].模糊系统与数学,1996,10(2):55-61. [17] 方志耕,刘思峰.基于纯策略的灰矩阵二人有限零和博弈模型研究[J].南京航空航天大学学报,2003,35(4):441-445. [18] Zhigeng Fang,Sifeng Liu.Grey matrix model based on pure strategy " A].Mohamed I.Dessouky,Cathal Heavey,eds.Proceedings of the 32nd International Conference on Computers & Industrial Engineering[C].Gemini International Limited Dublin,Ireland,2003.520-525. [19] 方志耕,刘思峰.基于纯策略的灰矩阵博弈模型研究(1)-标准灰矩阵博弈模型构建[J].东南大学学报,2003,33(6):796-800. [20] 刘思峰,党耀国,方志耕.灰色系统理论及其应用(第三版)[M].北京:科学出版社,2004. [21] Zhigeng Fang,Sifeng Liu,Yong Hu.Pure strategies Solution of grey matrix game based on interval grey numbers which connot be judged directly[C].The WOSC 13th International Congress of Cybernetics and Systems,Vol.5,Grey Systems and Plenary Session,Maribor,Slovenia:65-66. [22] 孙连友.动态信贷损失准备政策及其应用[J].国际金融研究,2004,(12):24-27. |