主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2006, Vol. ›› Issue (5): 109-113.

• 论文 • 上一篇    下一篇

寡占市场中有限理性博弈模型分析

张骥骧1, 达庆利1, 王延华2   

  1. 1. 东南大学经济管理学院, 南京, 210096;
    2. 上海交通大学环境学院, 上海, 200240
  • 收稿日期:2005-03-29 修回日期:2006-09-27 出版日期:2006-10-28 发布日期:2012-03-07
  • 基金资助:
    高等院校博士点专项科研基金资助项目(20030286008)

Analysis of a Game with Bounded Rationality in Oligopoly Market

ZHANG Ji-xiang1, DA Qing-li1, WANG Yan-hua2   

  1. 1. School of Economics and Management, Southest University, Nanjing 210096, China;
    2. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2005-03-29 Revised:2006-09-27 Online:2006-10-28 Published:2012-03-07

摘要: 基于有限理性的假设,通过构建模型,对一个不同理性、不同结构成本函数的双寡头博弈进行分析.讨论了Nash均衡点的存在性和稳定性,数值模拟出分支、混沌和奇异吸引子等复杂的动力学现象并计算出最大Lya-punov指数.指出寡头的理性会对博弈结果产生较大影响,对企业在混沌市场中的产量决策提供了理论依据.

关键词: 不同理性, 离散动力系统, Cournot模型, 混沌, 最大Lyapunov指数

Abstract: Based on the players with bounded rationality,the game model is built to analyze a nonlinear duopoly game with heterogeneous players and different functions of cost.The existence and stability of the Nash equilibrium of this system are studied.The complex dynamics, bifurcations,strange attractor and chaos are displayed by simulating numerically and the largest Lyapunov exponents are computed.We show thatenterprise's expectations have an impact on the result of duopoly game. The conclusions provide enterprise with theories of output decision-making in chaotic market.

Key words: heterogeneous expectations, discrete dynamical system, Cournot model, chaos, the largest Lyapunov exponents

中图分类号: