[1] Laurent,S., Peters, J. P..G@RCH2.2: An ox package for estimating and forecasting various ARCH models[J]. Journal of Economic Surveys, 2002,(16):447-485. [2] Laurent, S., Perters, J. P.. G@RCH 4.0, estimating and forecasting ARCH models[J].Timberlake Consultants, 2005. [3] Ricardo, A.. The Estimation of Market VaR Using GARCH Models and a Heavy Tail Dis-tributions. Working Paper Series, 2006. [4] 宋鹏燕, 刘琼荪. 基于幂率型分布的动态VaR模型及实证研究[J]. 中国管理科学, 2008, 16: 251-254. [5] 李成, 马国校. VaR模型在我国银行业同业拆借市场中的应用研究[J]. 金融研究, 2007, (5): 62-77. [6] Engle, R. E.. Autoregressive conditional heteroskedasticity with estimation of the variance of UK inflation[J]. Econometrics, 1982, 50: 987-1008. [7] Bollerslev, T.. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31: 307-327. [8] Bailliie, R. T., Bollerslev, T., Mikkelsen, H.. Fractional integrated generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1996, 74: 3-30. [9] Tse, Y. K.. The conditional heteroscedasticity of Yen-dollar exchange rate[J]. Journal of Applied Econometrics, 1998, 13: 49-55. [10] 张世英, 樊智. 协整理论与波动模型[M]. 北京: 清华大学出版社, 2004. [11] 张卫国, 胡彦梅, 陈建忠. 中国股市收益及波动的ARFIMA-FIGARCH模型研究[J]. 南方经济, 2006, (3): 108-112. [12] 曹广喜. 我国股市收益的双长记忆性检验——基于VaR估计的ARFIMA-HYGARCH-skt模型[J]. 数理统计与管理, 2009, (1): 167-174. [13] 殷炼乾, 邵锡栋. 中国金融市场波动率模型预测能力比较研究[J]. 预测, 2009, 28(5): 20-26. [14] 郑振龙, 黄薏舟. 波动率预测:GARCH模型与隐含波动率[J]. 数量经济技术经济研究, 2010, (1): 140-150. [15] 徐正国, 张世英. 调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J]. 系统工程, 2004, 25(8): 60-63. [16] 巍宇. 中国股票市场的最优波动率预测模型研究——基于沪深300指数高频数据的实证分析[J]. 管理学报, 2010, 7(6): 936-942. [17] 巍宇. 沪深300股指期货的波动率预测模型研究[J]. 管理科学学报, 2010, 13(2): 66-76. [18] Hansen, P. R., Lunde, A.. Consistent ranking of volatility models[J]. Journal of Econometrics, 2006, 131(2): 97-121. [19] 张永东, 毕秋香. 上海股市波动性预测模型的实证比较[J]. 管理工程学报, 2003, 15(2): 16-19. [20] Granger, C. W. J.. Long memory relationships and the aggregation of bynamic models [J]. Journal of Econometrics, 1980, 14: 227-238. [21] Hosking, J. R. M.. Fractional differencing [J]. Biometrika, 1981, 68: 165-176. [22] Davidson, J.. Moment and memory properties of linear conditional heteroscedasticity models, and a new model[J]. Journal of Business & Economic Statistics, 2004, 22: 16-29. [23] Tang, T. L., Shieh, S. J.. Long-memory in stock index futures markets: A value-at-risk approach[J]. Physica A, 2006, 366: 437-448. [24] Kupiec, P.H.. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995,(3): 73-84. [25] 曹广喜, 姚奕. 沪深股市动态溢出效应与动态相关性的实证研究——基于长记忆VAR-BEKK(DCC)-MVGARCH(1,1)模型[J]. 系统工程, 2008, (5): 47-54. [26] Lamoureux, C. G., William, D. L.. Forecasting stock return variance: Toward an understanding of stochastic impied volatilities[J]. Review of Financial Studies, 1993, 5: 293-326. [27] Hamilton, J. D.. Time Series Analysis[M]. Princeton University Press, 1994. |