主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2012, Vol. ›› Issue (2): 121-128.

• 论文 • 上一篇    下一篇

基于改进模糊遗传算法的混合车辆路径问题

张群, 颜瑞   

  1. 北京科技大学东凌经济管理学院, 北京 100083
  • 收稿日期:2011-05-16 修回日期:2012-01-11 出版日期:2012-04-29 发布日期:2012-04-25
  • 基金资助:
    国家重点基础研究发展规划(973,子课题)(2010CB955903-1)

Hybrid Vehicle Routing Problem Based on Improved Fuzzy Genetic Algorithm

ZHANG Qun, YAN Rui   

  1. School of Economics and Management, University of Science & Technology Beijing, Beijing 100083, China
  • Received:2011-05-16 Revised:2012-01-11 Online:2012-04-29 Published:2012-04-25

摘要: 本文建立了多配送中心、多车型、多产品的车辆路径问题的混合数学模型,提出了一种新的模糊遗传算法求解混合车辆路径问题,通过改进的模糊逻辑控制器实现交叉概率和变异概率的动态调整,以加快算法收敛速度并避免算法陷入局部最优解。采用标准算例进行对比,证明模糊遗传算法有较好的计算结果和计算效率,并用模糊遗传算法对混合车辆路径模型进行仿真测试,取得了理想的结果。

关键词: 车辆路径问题, 模糊遗传算法, 多配送中心

Abstract: A hybrid mathematic model is proposed with multi-depot, multi-type and multi-product vehicle routing problem. An improved fuzzy genetic algorithm is presented to solve the hybrid vehicle routing problem. Crossover probability and mutation probability are dynamic adjusted by improved fuzzy logistic controller, in order to speed up algorithm convergence and avoid falling into local optimal solution. Compared with standard example fuzzy genetic algorithm has good results and efficiency. Fuzzy genetic algorithm is used for the experiment of hybrid vehicle routing model, and the experiment get a good result.

Key words: vehicle routing problem, fuzzy genetic algorithm, multi-depot

中图分类号: