[1] Szegö G P.Portfolio theory: with application to bank asset management[M]. New York: Academic Press, 1980. [2] Markowitz H, Lacey R, Plymen J, et al. The general mean-variance portfolio selection problem(and discussion) [J]. Phil Trans R Soc Lond A, 1994,347:543-549. [3] Korki B,Turtle H J. A note on the analytics and geometry of limiting mean-variance investment opportunity sets[J]. Review of Quantitative Finance and Accounting, 1997, 9: 289-300. [4] 姚海祥,易建新,李仲飞. 奇异方差-协方差矩阵的n种风险资产有效边界的特征[J]. 数量经济技术经济研究, 2005, 22(1): 107-113. [5] 史树中,杨杰. 证券组合选择的有效子集[J]. 应用数学学报, 2002, 25(1): 176-186. [6] 蒋春福,戴永隆. 奇异协方差阵下证券组合的有效子集[J]. 应用概率统计,2008, 24(5): 484- 492. [7] 王金才,徐伟,郭丹. 证券组合选择有效子集的分类和搜索方法[J]. 数学的实践和认识, 2006, 36(2):115-118. [8] 蒋春福,戴永隆. 奇异协方差阵下有效前沿及有效组合的解析解[J]. 系统科学与数学, 2008, 28(9): 1134-1147. [9] Huberman G, Kandel S. Mean-variance spanning[J]. Journalof Finance, 1987, 42: 873- 888. [10] Cheung C S, Kwan C C, Mountain D C. On the nature of mean-variance spanning[J]. Finance Research Letters, 2009, 6: 106-113. [11] Glabadanidis P. Meansuring the economic significance of mean-variance spanning[J]. The Quarterly Review of Economics and Finance, 2009, 49: 596-616. [12] 吴国清,周远航. 规模组合、因子定价与均值-方差张成[J]. 数量经济技术经济研究,2005, 22(11): 57-67. [13] 李传乐. HJ随机折现因子框架下的均值-方差张成研究[J]. 华南师范大学学报(自然科学版), 2009,4:35-38. [14] Kan R, Zhou G. Optimal portfolio choice with parameter uncertainty[J]. Journal of Financial and Quantitative Analysis, 2007, 42(3): 621-656. [15] Tu J, Zhou G. Incorporating economic objectives into Bayesian priors: portfolio choice under parameter uncertainty[J]. Journal of Financial and Quantitative Analysis, 2010, 45(4): 959- 986. [16] 袁子甲,李仲飞. 参数不确定性和效用最大化下动态投资组合选择[J]. 中国管理科学, 2010, 18(5): 1-6. [17] 杨朝军,陈浩武.参数不确定性对最优资产组合的影响:基于中国的实证[J]. 中国管理科学, 2008, 16(3): 37-43. [18] Rothschild M, Stiglitz J E. Increasing Risk I: A Definition[J]. Journal of Economic Theory, 1970, 2(3): 225-243. [19] Anderson T W. An introduction of multivariate statistical anslysis (2nd edition) [M]. New York: Wiley, 1984. [20] DeRoon F A, Nijman T E. Testing for mean-variance spanning: a survey[J]. Journal of Empirical Finance, 2001, 8: 111-155. [21] Kan R, Zhou G.Testing of mean-variance spanning. Working paper,University of Toronto and Washington University, St.Louis, 2008. [22] Seo T, Toyama T. On the estimation of kurtosis parameter in elliptically distributions[J]. Journal of the Japan Statistical Society, 1996, 26: 59-68. |