[1] Tsay R S. Analysis of financial time series, 3nd [M]. New Jersey: John Wiley & Sons, 2010. [2] Artzner P, Delbaen F, Eber J, Heath D. Thinking coherently [J]. Risk, 1997, 10(11): 68-71. [3] Rockafellar R T, Uryasev S. Optimization of conditional value-at-Risk [J]. Journal of Risk, 2000, 2: 21-41. [4] 杨青, 曹明, 蔡天晔. CVaR-EVT和BMM在极端金融风险管理中的应用研究[J]. 统计研究,2010,(06): 78-86. [5] 叶五一, 陈杰成, 缪柏其. 基于虚拟变量分位点回归模型的条件VaR估计以及杠杆效应分析[J]. 中国管理科学, 2010, 18(4): 1-6. [6] 叶五一, 缪柏其. 应用门限分位点回归模型估计条件VaR [J]. 系统工程学报, 2008, 23(2): 154-160. [7] 叶五一, 缪柏其. 应用复合极值理论估计动态流动性调整VaR [J]. 中国管理科学,2008,16(3): 44-49. [8] Cline D B H. Evaluating the lyapounov exponent and existence of moments for threshold AR-ARCH models [J]. J Time Ser Anal, 2007, 28: 241-260. [9] Li Dong, Ling S. On the quasi-maximum likelihood estimation of a threshold double AR model. Working Paper,2010. [10] Weiss A A. Asymptotic theory for ARCH models: estimation and testing [J]. Econometric Theory, 1986, 2: 107-131. [11] Cline D B H, Pu H H. Stability and the Lyapounov exponent of threshold AR-ARCH models [J]. Ann Appl Probab, 2004, 14: 1920-1949. [12] Li W K, Lam K. Modeling asymmetry in stock returns by a threshold ARCH model [J]. J R Stat Soc Ser D: Statistician, 1995, 44: 333-341. [13] Li C W, Li W K. On a double threshold autoregressive heteroscedastic time series model [J]. J Appl Econometrics, 1996, 11: 253-274. [14] Ling Shiqing. Estimation and testing stationarity for double autoregressive models [J]. J R Stat Soc Ser B: Stat Methodol, 2004, 66: 63-78. [15] Ling Shiqing. A double AR(p) model: structure and estimation [J]. Statist Sinica, 2007, 17: 161-175. [16] Ling Shiqing. Asymptotic inference for a nonstationary double AR(1) model [J]. Biometrika, 2008, 95: 257-263. [17] Chan K S. Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model [J]. Ann Statist, 1993, 21: 520-533. [18] Fan J, Yao Q. Nonlinear time series: nonparametric and parametric methods [M]. New York: Springer-Verlag, 2003. [19] Tsay R S. Nonlinearity test for time series [J]. Biometrika, 1986, 73: 461-466. |