主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2012, Vol. 20 ›› Issue (5): 7-15.

• 论文 • 上一篇    下一篇

基于多分形理论的动态VaR预测模型研究

魏宇   

  1. 西南交通大学经济管理学院, 四川 成都 610031
  • 收稿日期:2011-04-24 修回日期:2012-07-18 出版日期:2012-10-29 发布日期:2012-10-27
  • 基金资助:
    国家自然科学基金资助项目(70771097,71071131,71090402);教育部创新团队发展计划(PCSIRT0860);中央高校基本科研业务费专项资金资助项目(SWJTU11ZT30,SWJTU11CX137)

Forecasting Model for Dynamic Value-at-Risk Based on Multifractal Theories

WEI Yu   

  1. School of Economics &Management, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2011-04-24 Revised:2012-07-18 Online:2012-10-29 Published:2012-10-27

摘要: 经济物理学(econophysics)的大量研究表明,金融市场的波动具有复杂的多分形(multifractal)特征,因此准确地测度和预测市场波动,对金融风险管理工作的意义重大。在已有多分形波动率(multifractal volatility)测度及其模型应用基础上,以上证综指10年的高频数据为对象,提出了基于多分形波动率的样本外动态风险价值(out-of-sample dynamic VaR)预测法。通过两种规范的后验分析(backtesting)结果表明,与8种主流的线性和非线性GARCH族模型相比,在高风险水平上,基于多分形波动率测度的VaR模型明显具有更高的样本外动态风险预测精度。

关键词: 多分形, 波动率, 样本外动态风险价值, 预测, Backtesting

Abstract: Much literature in Econophysics reveals that the volatility in financial markets presents multifractal features. Thus, measuring and forecasting the market volatility accurately is very important for financial risk management. Based on the earlier research of multifractal volatility and its model, an out-of-sample dynamic VaR forecasting method is proposed in this paper. The empirical results on two backtesting techniques show that, on high-risk levels, VaR model based on multifractal volatility produces much better out-of-sample VaR forecasts than eight popular linear and nonlinear GARCH models.

Key words: multifractal, volatility, out-of-sample dynamic VaR, forecasting, backtesting

中图分类号: