[1] Matteo T D. Multi-scaling in finance [J]. Quantitative Finance, 2007, 7(1): 21-36. [2] Mandelbrot B B. A multifractal walk down wall street [J]. Scientific American, 1999, 280(2): 70-73. [3] Stanley H E, Amaral L A N, et al. Similarities and differences between physics and economics [J]. Physica A, 2001, 299(1-2): 1-15. [4] Bacry E, Delour J, et al. Modeling financial time series using multifractal random walks [J]. Physica A, 2001, 299(1-2): 84-92. [5] Calvet L, Fisher A. Multifractality in asset returns: theory and evidence [J]. Review of Economics and Statistics, 2002, 84(3): 381-406. [6] Xu Zhaoxia, Gencay R. Scaling, self-similarity and multifractality in FX markets [J]. Physica A, 2003, 323: 578-590. [7] 何建敏,常松.中国股票市场多重分形游走及其预测[J].中国管理科学,2002,10(3):11-17. [8] 张永东,毕香秋.中国股票市场多标度行为的实证分析[J].预测,2002,21(4):56-59. [9] 胡雪明,宋学锋.沪深股票市场的多重分形分析[J].数量经济技术经济研究,2003,(8):124-127. [10] 施锡铨,艾克凤.股票市场风险的多重分形分析[J].统计研究,2004,(9):33-36. [11] 魏宇,黄登仕.金融市场多标度分形现象及与风险管理的关系[J].管理科学学报,2003,6(1):87-91. [12] 魏宇,黄登仕.基于多标度分形理论的金融风险测度指标研究[J].管理科学学报,2005,8(4):50-59. [13] 周孝华,宋坤,等.股票价格持续大幅度波动前后多重分形谱的异常及分析[J].管理工程学报,2006,20(2):92-96. [14] 苑莹,庄新田.股票市场多重分形性的统计描述[J].管理评论,2007,19(12):3-8. [15] Faruk S, Ramazan G. Intraday dynamics of stock market returns and volatility [J]. Physica A, 2006, 367: 375-387. [16] 魏宇.金融市场的多分形波动率测度、模型及其SPA检验[J].管理科学学报,2009,12(5):88-99. [17] 魏宇.多分形波动率测度的VaR计算模型[J].系统工程理论与实践,2009,29(9):7-15. [18] Swanson N R, Elliott G, et al. Predictive methodology and application in economics and finance: volume in honor of the accomplishments of Clive W.J. Granger [J]. Journal of Econometrics, 2006, 135(1-2): 1-9. [19] Ashely R, Granger C W J, et al. Advertising and aggregate consumption: an analysis of causality [J]. Econometrica, 1980, 48(5): 1149-1167. [20] Lo A W, MacKinlay A C. Data-snooping biases in tests of financial asset pricing models [J]. Review of Financial Studies, 1990, 3(3): 431-467. [21] Foster F D, Smith T, et al. Assessing goodness-of-fit of asset pricing models: the distribution of the maximal R2 [J]. Journal of Finance, 1997, 52(2): 591-607. [22] Koopman S J, Jungbacker B, et al. Forecasting daily variability of the S&P100 stock index using historical, realized and implied volatility measurements [J]. Journal of Empirical Finance, 2005, 12(3): 445-475. [23] Andersen T G, Bollerslev T, et al. The distribution of realized stock return volatility [J]. Journal of Financial Economics, 2001, 61(1): 43-76. [24] Cont R. Empirical properties of asset returns: stylized facts and statistical issues [J]. Quantitative Finance, 2001, 1(2): 223-236. [25] Hansen P R, Lunde A. A forecast comparison of volatility models: does anything beat a GARCH(1,1)?[J]. Journal of Applied Econometrics, 2005, 20(7): 873-889. [26] 龚锐,陈仲常,等.GARCH族模型计算中国股市在险价值(VaR)风险的比较研究与评述[J]. 数量经济技术经济研究,2005,(7):67-81. [27] Kupiec P H. Techniques for verifying the accuracy of risk measurement models [J]. Journal of Derivatives, 1995,3(2): 73-84. [28] Engle R, Manganelli S. CAViaR: conditional autoregressive value at risk by regression quantiles [J]. Journal of Business and Economic Statistics, 2004, 22(4): 367-381. [29] Kang S H, Kang S M, et al. Forecasting volatility of crude oil markets [J]. Energy Economics, 2009, 31(1): 119-125. [30] Wei Yu, Wang Yudong, Huang Dengshi. Forecasting crude oil market volatility: further evidence using GARCH-class models [J]. Energy Economics, 2010, 32(6): 1477-1484. [31] Angelidis T, Benos A, et al. The use of GARCH models in VaR estimation [J]. Statistical Methodology, 2004, 1(1-2): 105-128. [32] So M K P, Yu P L H. Empirical analysis of GARCH models in value at risk estimation [J]. Journal of International Financial Markets, Institutions and Money, 2006, 16(2): 180-197. [33] 周炜星.金融物理学导论[M].上海:上海财经大学出版社,2007. [34] Jiang Zhiqiang, Zhou Weixing. Multifractality in stock indexes: fact or fiction? [J]. Physica A, 2008, 387(14): 3605-3614. |