[1] 吴吉林,陶旺升.基于机制转换与随机波动的我国短期利率研究[J].中国管理科学,2009,17(3):40-46. [2] 潘婉彬,陶利斌,缪柏其.利率期限结构模型非线性建模[J].中国管理科学,2008,16(5):17-21. [3] 周荣喜,王晓光.基于多因子仿射利率期限结构模型的国债定价[J].中国管理科学,2011,19(4):26-30. [4] 戴国强,李良松.利率期限结构模型估计结果影响因素经验研究[J].中国管理科学,2010,18(1):9-17. [5] McCulloch J H.Measuring the term structure of interest rate[J].Journal of Business,1971,44(1):73-89. [6] 郑振龙,林海.中国市场利率期限结构的静态估计[J].武汉金融,2003,(3):33-39. [7] 朱世武,陈健恒.交易所国债利率期限结构实证研究[J].金融研究,2003,(10):63-73. [8] Vasicek,O A, Gifford F H.Term structure modeling using exponential splines[J].Journal of Finance,1982,37:339-348. [9] 陈雯,陈浪南.国债利率期限结构:建模与实证[J].世界经济,2000,(8):24-28. [10] Nelson C R, Siegel A F.Parsimonious modeling of yield curves [J].Journal of Business,1987,60(4):19-31. [11] 范龙振.上交所债券利率期限结构与两因子Vasicek模型[J].复旦学报(自然科学版),2003,(5):773-778. [12] Steeley J.Estimating the glit-edged term structure:basis splines and confidence intervals[J].Journal of Business Finance & Accounting,1991,18(4):513-529. [13] Chambers D R.,Carleton W T.Waldman D W.A new approach to estimation of the term structure of interest rates[J].Journal of Financial & Quantitative Analysis,1984,19(3):233-252. [14] 吴泽福,吴捷.基于L1样条与B样条改进的利率期限结构估计优化[J].华侨大学学报(哲社版),2010,(2):49-57. [15] Peterson E L.The duality between suboptimization and parameter deletion[J].Mathematics of Operations Research,1977,2:311-319. [16] Lavery J E.Univariate cubic L1 splines and shape-preserving multiscale interpolation by univariate cubic L1 splines[J].Computer Aided Geometric Design,2000,17:319-336. [17] Cheng Hao,Fang S C, Lavery J E.A geometric programming framework for univariate cubic L1 smoothing splines[J].Annals of Operations Research,2005,133:229-248. [18] Huber P J.Robust smoothing[M]//Launer R L,Wilkinson G N.Robustness in statistics.New York:Academic Press,1979. [19] Cheng H,Fang S C, Lavery J E.Univariate cubic L1 splines-a geometric programming approach[J].Mathematical Methods of Operations Research,2002,56(2):361-382. [20] 吴泽福.利率期限结构波动效应的协整实证[J].华侨大学学报(自然版),2010,31(1):99-105. [21] Lavery J E.Shape-preserving,first-derivative-based parametric and nonparametric cubic L1 spline curves[J].Comput Aided Geom Design,2006,23:276-296. [22] Murray W,Gill P E,Saunders M A.SNOPT:an SQP algorithm for large-scale constrained optimization[J].SIAM J Optim,2002,12:979-1006. |