[1] Lee H L, Padmanabhan V, Whang S. The bullwhip effect in supply chains[J].Sloan Management Review,1997, 38(3): 93-102. [2] Lee H L, Padmanabhan V, Whang S. Information distortion in a supply chain:the bullwhip effect[J].Management Science, 1997, 43(4): 546-558. [3] Forrester J. Industrial dynamics, a major breakthrough for decision makers[J].Harvard Business Review,1958,36: 37-66. [4] Naish H F. Production smoothing in the linear quadratic inventory model[J].The Economic Journal,1994,104 (425): 864-875. [5] Goodwin J, Franklin S. The beer distribution game: Using simulation to teach systems thinking [J].Journal of Management Development, 1994, 13(8): 7-15. [6] Chen F, Drezner Z, Ryan J, Simchi-Levi D. Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information[J].Management Science, 2000, 46(3): 436-443. [7] Chen F, Ryan J, Simchi-Levi D. The impact of exponential smoothing forecasts on the bullwhip effect[J].Naval Research Logistics, 2000, 47(4): 271-286. [8] Aviv Y. A time-series framework for supply chain inventory management[J].Operations Research,2003,51(2): 210-227. [9] Gaur V, Giloni A, Seshadri S. Information sharing in a supply chain under ARMA demand[J].Management Science, 2005, 51(6): 961-969. [10] Gilbert K. An ARIMA supply chain model [J].Management Science, 2005, 51(2): 305-310. [11] Zhang Xiaolong. Technical note:evolution of ARMA demand in supply chains[J].Manufacturing Service and Operations Management, 2004, 6(2): 195-198. [12] Daganzo C F. On the stability of supply chains [J].Operations Research, 2004, 52(6): 909-921. [13] Dejonckheere J, Disney S M, Lambrecht M R, et al. Measuring and avoiding the bullwhip effect: A control theoretic approach [J].The European Journal of Operational Research, 2003, 147(3): 567-590. [14] Dejonckheere J, Disney S M, Lambrecht M R, et al. The impact of information enrichment on the bullwhip effect in supply chains: a control engineering perspective [J].The European Journal of Operational Research, 2004, 153(3): 727-750. [15] Ouyang Y F, Daganzo C F. Characterization of the bullwhip effect in linear, time-invariant supply chains: Some formulae and tests[J].Management Science, 2006, 52(10): 1544-1556. [16] Ouyang Y F, Daganzo C. Robust tests for the bullwhip effect in supply chains with stochastic dynamics [J].European Journal of Operational Research, 2008, 85(1): 340-353. [17] 徐家旺,黄小原,邱若臻.需求不确定环境下闭环供应链的鲁棒运作策略设计[J].中国管理科学,2007,15(6): 111-117. [18] 胡丹丹,杨超.α-鲁棒随机截流选址问题的模型和算法[J].中国管理科学, 2008, 16(6): 87-94. [19] 苏春华,刘思峰.灰色随机线性时滞系统的渐近稳定性[J].控制与决策, 2008, 23(5): 571-580. [20] Swaroop D, Hedrick J K. String stability of interconnected systems[J].IEEE Transactions on Automatic Control, 1996, 41(3): 349-357. [21] Fang Yuguang, Loparo A K, Feng Xiangbo. Stability of discrete time jump linear systems[J].Journal of Mathematical Systems, Estimation and Control, 1995, 5(3): 275-321. [22] Costa L V O, Fragoso M. Stability results for discrete-time linear systems with Markovian jumping parameters[J].Journal of Mathematical Analysis and Applications, 1993, 179(1): 154-178. [23] Ji Yuandong, Chizeck H, Feng Xiangyang, Loparo K. Stability and control of discrete-time jump linear systems[J].Control Theory Adv Technol, 1991, 7(2): 247-270. [24] Ji Yuandong, Chizeck H. Jump linear quadratic gaussian control: steadystate solution and testable conditions[J].Control Theory Adv Technol, 1990, 6(3): 289-318. [25] Ji Yuandong, Chizeck H J. Controllability, observability and discrete-time Markovian jump linear quadratic control[J]. International Journal of Control, 1988, 48(2): 481-498. [26] Seiler P J, Sengupta R. A bounded real lemma for jump systems[J].IEEE Transactions on Automatic Control, 2003, 48 (9): 1651-1654. [27] Boyd S, Ghaoui L E, Feron E, et al. Linear matrix inequalities in system and control theory[M]//SIAM studies in applied mathematics.Philadelphia: society for Industriul and Applied Mathematics, 1994. [28] Boyd S, Vandenberghe L. Convex optimization[M].Cambridge: Cambridge University Press, 2004. |