[1] Andersen T G, Bollerslev T, Diebod F X,et.al. Modelling and forecasting realized volatility [J]. Econometrica, 2003, 71(2): 579-625. [2] Corsi F. A simple approximate long memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7(2): 174-196. [3] 徐正国,张世英. 调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J]. 系统工程,2004, 22(8): 60-63. [4] 郭名媛,张世英. 赋权已实现波动及其长记忆、最优抽样频率选择 [J]. 系统工程学报, 2006, 21(6): 568-573. [5] 魏宇,余怒涛. 中国股票市场的波动率预测模型及其SPA检验 [J]. 金融研究, 2007, 28(7): 138-150. [6] 魏宇. 中国股票市场的最优波动率预测模型研究[J]. 管理学报, 2010, 7(6): 936-942. [7] Andersen T G, Bollerslev T, Diebod F X. Roughing it up: Including jump components in the measurement, modeling, and forecasting of return volatility [J]. The Review of Economics and Statistics, 2007, 89(4): 701-720. [8] Giot P, Laurent S. The information content of implied volatility in the light of the jump/continuous decomposition of realized volatility [J]. Journal of Future Markets, 2007, 27(3): 337-359. [9] 王春峰,姚宁,房振明,等. 中国股市已实现波动率的跳跃行为研究 [J]. 系统工程, 2008, 26(2): 1-6. [10] Shalen C T. Volume, volatility and dispersion of beliefs [J]. Review of Financial Studies, 1993, 6(2):405-434. [11] Wang Jiang. A model of competitive stock trading volume [J]. Journal of Political Economy, 1994, 102(1):127-168. [12] Buraschi A, Trojani F, Vedolin A. The joint behavior of credit spreads, stock options and equity returns when investors disagree [R]. Working Paper, Imperial College,2007. [13] 杨科,陈浪南. 跳跃对中国股市波动率预测的影响研究[J]. 山西财经大学学报, 2010, 32(8): 39-48. [14] Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business and Economic Statistics, 2006, 24(2): 127-218. [15] Barndor-Nielsen O E, Shephard N. Realized power variation and stochastic volatility [J]. Bernoulli, 2003, 9(2): 243-265. [16] Barndor-Nielsen O E, Shephard N. Econometric analysis of realised covariation: high frequency covariance, regression and correlation in financial economics[J]. Econometrica, 2004, 72(3): 885-925. [17] Barndor-Nielsen O E, Shephard N. Impact of jumps on returns and realized variances: econometric analysis of time-deformed levy process[J]. Journal of Econometrics, 2006, 131(1): 217-252. [18] Huang Xin, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics, 2005, 3(4):456-499. [19] Corsi F, Pirino D, Reno R. Threshold bipower variation and the impact of jumps on volatility forecasting[J]. Journal of Econometrics, 2010, 159(2):276-288. [20] Forsberg L, Ghysels, E. Why do absolute returns predict volatility so well?[J]. Journal of Financial Econometrics, 2007, 5(1): 31-67. [21] Ghysels E, Valkanov R. Linear time-series processes with mixed data sampling and MIDAS regression models [R]. Discussion paper, UNC and UCSD, 2006. [22] Ghysels E, Santa-Clara P, Valkanov R. Predicting volatility: getting the most out of return data sampled at different frequencies[J]. Journal of Econometrics, 2006b, 131(1): 59-95. [23] Ghysels E., Santa-Clara P, Valkanov R. MIDAS regressions: further results and new directions [J]. Econometric Reviews, 2007, 26(1): 53-90. [24] Ghysels E, Santa-Clara P, Valkanov R. The MIDAS touch: mixed data sampling regression models[R]. Discussion paper, UNC and UCLA, 2010. [25] Potton A J. Volatility forecast comparison using imperfect volatility proxies[J]. Journal of Econometrics, 2011, 160(1): 246-256. [26] Hansen P R, Lunde A. A forecast comparison of volatility models: Does anything beat a GARCH(1,1)?[J]. Journal of Applied Econometrics, 2005, 20(7): 873-889. [27] Maheu J M, Mc Curdy H. New arrival, jump dynamics and volatility components for individual stock returns[J]. Journal of Finance, 2004, 59(2): 755-793. [28] Duffie D, Pan J, Singleton K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6):1343-1376. [29] Eraker B, Johannes M S, Polson N G. The impact of jumps in volatility and return[J]. Journal of Finance, 2003, 58(3):1269-1300. |