主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2013, Vol. 21 ›› Issue (3): 50-60.

• 论文 • 上一篇    下一篇

跳跃的估计、股市波动率的预测以及预测精度评价

杨科1, 田凤平2, 林洪3   

  1. 1. 华南农业大学经济管理学院, 广东 广州 510642;
    2. 中山大学国际商学院, 广东 广州 510275;
    3. 广东商学院, 广东 广州 510320
  • 收稿日期:2011-12-30 修回日期:2012-10-11 出版日期:2013-06-30 发布日期:2013-06-20
  • 基金资助:
    国家自然科学基金资助项目(70971143,71203067);华南农业大学经济管理学院"211工程"青年项目(2012211QN03);中国博士后科学基金(2011M500134);广东省哲学社会科学规划项目(GD11YLJ01);中山大学青年教师起步资助计划(41000-3181404);2011年度中山大学人文社会科学青年教师桐山基金资助项目;广东省高等学校高层次人才项目;中山大学985工程三期建设项目金融创新与区域发展研究创新基地

Jump Estimation, Stock Market Volatility Forecasting and Prediction Accuracy Evaluation

YANG Ke1, TIAN Feng-ping2, LIN Hong3   

  1. 1. College of Economics & Management, South China Agricultural University, Guangzhou 510642, China;
    2. International Business School, Sun Yat-sen University, Guangzhou 510275, China;
    3. Guangdong University of Business Studies, Guangzhou 510320, China
  • Received:2011-12-30 Revised:2012-10-11 Online:2013-06-30 Published:2013-06-20

摘要: 本文基于C_TMPV理论估计已实现波动率的跳跃成分,在此基础上构建考虑跳跃的AHAR-RV-CJ模型和MIDAS-RV-CJ模型来预测中国股市的已实现波动率,并评价和比较各类波动率模型的预测精度。实证结果表明:基于C_TMPV估计的波动率跳跃成分对日、周以及月波动率的预测有显著的正向影响;AHAR-RV-CJ模型和MIDAS-RV-CJ模型的样本内和样本外预测精度在不同的预测时域上都是最高的,尤其是对数形式的模型;MIDAS族模型的样本外预测精度在中长期预测时域上比HAR族模型高;AHAR-RV-CJ模型和MIDAS-RV-CJ模型的样本外预测能力在中长期预测时域上比基于低频数据的Jump-GARCH模型、SV-CJ模型和SV-IJ模型好。

关键词: 波动率预测, 已实现波动率, C_TMPV, MIDAS 模型, SPA检验

Abstract: Based on the theory of corrected realized threshold multipower variation(C_TMPV), the jump components of the realized volatility are estimated, and two newly developed realized volatility model allowing for jump, the AHAR-RV-CJ model and MIDAS-RV-CJ model, are proposed to predict realized volatility of Chinese Stock Markets. The forecast accuracies of several volatility models are also evaluated and compared. Our findings demonstrate that the jump components of the realized volatility estimated by C_TMPV have positive and significant impacts on daily, weekly and monthly volatility prediction, and the AHAR-RV-CJ model and MIDAS-RV-CJ models with the continuous and jump components of the volatility are the best models for future volatility prediction in different prediction horizons. These results hold up for both the in-sample and out-of-sample forecasts, especially the logarithmic models. It is also found that the out-of-sample forecasting performance of MIDAS model is better than HAR model with the same regressor and the out-of-sample predictive power of AHAR-RV-CJ and MIDAS-RV-CJ models is better than Jump-GARCH, SV-CJ and SV-IJ models in the medium and long prediction horizons.

Key words: volatility forecasting, realized volatility, C_TMPV, MIDAS model, SPA test

中图分类号: