主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2013, Vol. 21 ›› Issue (3): 153-158.

• 论文 • 上一篇    下一篇

电子商务推荐系统中群体用户推荐问题研究

梁昌勇1,2, 冷亚军1,2, 王勇胜3, 戚筱雯1,2   

  1. 1. 合肥工业大学管理学院, 安徽 合肥 230009;
    2. 过程优化与智能决策教育部重点实验室, 安徽 合肥 230009;
    3. 东北电力大学建筑工程学院, 吉林 吉林 132012
  • 收稿日期:2011-06-28 修回日期:2012-06-21 出版日期:2013-06-30 发布日期:2013-06-20
  • 基金资助:
    高等学校博士学科点专项科研基金项目(20110111110006);教育部人文社会科学研究青年基金项目(09YJC630055)

Research on Group Recommendation in E-commerce Recommender Systems

LIANG Chang-yong1,2, LENG Ya-jun1,2, WANG Yong-sheng3, QI Xiao-wen1,2   

  1. 1. School of Management, Hefei University of Technology, Hefei 230009, China;
    2. Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China;
    3. School of Civil and Architecture, Northeast Dianli University, Jilin 132012, China
  • Received:2011-06-28 Revised:2012-06-21 Online:2013-06-30 Published:2013-06-20

摘要: 尽管传统的电子商务推荐系统在个体用户推荐方面取得了巨大成功,但它并不适用于向群体用户进行推荐。随着虚拟社区中群体用户的不断增加,构建群体推荐系统,向群体用户提供个性化推荐,减少他们搜集信息所耗费的时间和精力显得越来越重要。基于此,本文提出了一种新颖的推荐方法—结合领域专家法的群体用户推荐算法。该算法以基于项目的协同过滤技术为基础,根据群体成员间的相互作用确定群体偏好,由群体偏好产生推荐,推荐过程中存在的成员未评分项采用领域专家法进行预测填充,此外本文算法还考虑了成员间相似关系对推荐质量的影响。实验结果表明了本文算法的有效性。

关键词: 电子商务推荐系统, 群体用户推荐, 协同过滤, 领域专家法

Abstract: Although the traditional e-commerce recommender systems have achieved great success in recommending products to individuals, they are not suitable for group recommendation. As the number of groups increases rapidly in the virtual communities, building group recommender systems to provide personalized services to groups becomes more and more imperative. Therefore, a group recommendation algorithm combined with domain expert imputation is proposed in this paper. The proposed algorithm is designed based on the framework of item-based collaborative filtering. It first identifies group preferences according to every member’s preferences, and then generates recommendations based on the group preferences. Especially, domain expert method is used to impute values for members’ unrated items in the recommendation process. In addition, the proposed algorithm considers the effects of member similarities on recommendation quality. The experimental results show that the proposed algorithm is effective.

Key words: e-commerce recommender systems, group recommendation, collaborative filtering, domain expert imputation

中图分类号: