[1] Lee T Q, Park Y,Park Y T.An empirical sudy on effectiveness of temporal information as implicit ratings [J]. Expert Systews with Applications,2009,36(2):1315-1321. [2] Linden G, Smith B, York J. Amazon.com recommendations: item-to-item collaborative filtering [J]. IEEE Internet Computing, 2003, 7(1): 76-80. [3] Russell S, Yoon V. Applications of wavelet data reduction in a recommender system [J]. Expert System with Applications, 2008, 34(4): 2316-2325. [4] Shang Mingsheng, Jin Cihang, Zhou Tao,et al. Collaborative filtering based on multi-channel diffusion [J]. Physica A, 2009, 388(23): 4867-4871. [5] 豆瓣网站[EB/OL]. http://www.douban.com. [6] McCarthy K, Salamó M, Coyle L, et al. Group recommender systems: A critiquing based approach [C]//Proceedings of the 11th international conference on intelligent user interfaces.New York:ACM,2006:267-269. [7] McCarthy J F, Anagnost T D. MusicFX: An arbiter of group preferences for computer supported collaborative workouts [C]//Proceedings of the 1998 ACM conference on computer-supported cooperative work. New York:ACM,1998: 363-372. [8] O’Connor M, Cosley D, Konstan JA, et al. PolyLens: A recommender system for groups of users[C]// Proceedings of the 7th European conference on computer supported cooperative work. Norwell:Kluwer Academic,2001. [9] Jameson A. More than the sum of its members: challenges for group recommender systems [C]// Proceedings of the working conference on advanced visual interfaces.New York:ACM, 2004. [10] Chen Yenliang,Cheng Lichen,Chuang Chingnan. A group recommendation system with consideration of interactions among group members [J]. Expert Systems with Applications, 2008, 34(3): 2082-2090. [11] Herlocker J, Konstan J, Terveen L, et al. Evaluating collaborative filtering recommender systems [J]. ACM Transactions on Information Systems, 2004, 22 (1): 5-53. [12] Lee S K, Cho Y H, Kim S H. Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations [J]. Information Sciences, 2010, 180(11): 2142-2155. [13] 邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法 [J].软件学报, 2003, 14(9): 1621-1628. [14] Sarwar B M. Sparsity, scalability, and distribution in recommender systems[D]. Minneapolis: University of Minnesota, 2001. [15] Lee J S, Olafsson S. Two-way cooperative prediction for collaborative filtering recommendations[J]. Expert Systems with Applications, 2009, 36: 5353-5361. [16] 当当网[EB/OL]. http://www.dangdang.com. [17] 李聪,梁昌勇,马丽.基于领域最近邻的协同过滤推荐算法[J].计算机研究与发展,2008,45(9):1532-1538. [18] Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749. [19] Ahn H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J]. Information Sciences, 2008, 178(1): 37-51. [20] Masthoff J, Gatt A. In pursuit of satisfaction and the prevention of embarrassment: affective state in group recommender systems [J]. User Modeling and User-Adapted Interaction, 2006, 16(3-4): 281-319. [21] Movie Lens website[EB/OL]. http://movielens.umn.edu. [22] 郁雪,李敏强.基于PCA-SOM的混合协同过滤模型[J].系统工程理论与实践, 2010, 30(10): 1850-1854. [23] MacQueen J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley symposium on mathematical statistics and probability,1967:281-297. |