[1] Markowitz H M. Portfolio selection[J]. Journal of Finance, 1952, 7: 77-91. [2] Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking & Finance,2002,26 (7): 1487-1503. [3] Tasche D. Expected shortfall and beyond[J]. Journal of Banking & Finance, 2002, 26(7): 1519-1533. [4] Yamai Y,Yoshiba T. Value-at-risk versus expected shortfall: a practical perspective[J].Journal of Banking & Finance, 2005, 29(4): 997-1015. [5] Szego G. Measures of risk[J].Journal of Banking & Finance, 2002, 26(7):1253-1272. [6] Kibzun A I, Kuznestsov E A. Analysis of criteria VaR and CVaR[J].Journal of Banking & Finance, 2006, 30(2): 779-796. [7] Artzner P, Delbaen F, Eber J M, et al. Coherent measures of risk[J].Mathematical Finance,1999, 9: 203-228. [8] Alexander S,Coleman T F, Li Y. Minimizing CVaR and VaR for a portfolio of derivatives[J]. Journal of Banking & Finance, 2006, 30(2): 583-605. [9] Zhu Shushang,Fukushima M. Worst-case conditional value-at-risk with application to robust portfolio management[J]. Operations Research, 2009, 57(5): 1155-1168. [10] Inui K,Kijima M. On the significance of expected shortfall as a coherent risk measure[J].Journal of Banking & Finance, 2005, 29(4): 853-864. [11] Acerbi C. Spectral measures of risk: a coherent representation of subjective risk aversion[J]. Journal of Banking & Finance, 2002, 26(7): 1505-1518. [12] Adam A, Houkari M, Laurent J P. Spectral risk measures and portfolio selection[J].Journal of Banking & Finance, 2008, 32(9): 1870-1882. [13] Takeda A,Kanamori T. A robust approach based on conditional value-at-risk measure to statistical learning problems[J].European Journal of Operational Research, 2009, 198(1): 287-296. [14] Alexander G J,Baptistia A M. A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model[J]. Management Science, 2004, 50(9): 1261-1273. [15] Yu Jinping,Yang Xiaofeng, Li Shenghong. Portfolio optimization with CVaR under VG process[J].Research in International Business and Finance, 2009, 23(1): 107-116. [16] Hu Wenbo,Kercheval A N. Portfolio optimization for student t and skewed t returns[J]. Quantative Finance, 2010, 10(1): 91-105,18. [17] Zhu Shushang,Fukushima,M. Worst-case conditional value-at-risk with application to robust portfolio management[J].Operations Research, 2009, 57(5): 1155-1168. [18] Huang Dashan, Zhu Shushang,Fabozzi F J,Fukushima M. Portfolio selection under distributional uncertainty: A relative robust CVaR approach[J].European Journal of Operational Research, 2010, 203(1): 185-194. [19] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 2000, 2(3):21-41. [20] Rockafellar R T,Uryasev S. Conditional value-at-risk for general loss distributions[J].Journal of Banking & Finance, 2002, 26(7): 1443-1471. [21] Folmer H, Schied A. Convex measures of risk and trading constraints[J].Finance and Stochastics, 2002, 6(4): 429-447. [22] Cheng Zhiping, Yang Li. Nonlinearly weighted convex risk measure and its application[J].Journal of Banking & Finance, 2011, 35 (7): 1777-1793. [23] 胡支军,黄登仕.一个非对称风险度量模型及组合证券投资分析[J].中国管理科学,2005, 13(2): 8-14. [24] 周春阳,吴冲锋.基于目标的风险度量方法[J].管理科学学报, 2009, 12(6): 83-89. [25] Chen Zhiping, Wang Yi.Two-side coherent risk measure and its application in realistic portfolio optimization[J].Journal of Banking &Finance, 2008, 32(12): 2667-2673. [26] Chen Zhiping, Wang Yi. A new class of coherent risk measures based on p-norms and their applications[J].Applied Stochastic Models in Bussiness and Indursty, 2007, 23(1): 49-62. [27] 王春峰,庄泓刚,房振明,等.多维条件方差偏度峰度建模[J].系统工程理论与实践, 2010, 30(2): 324-331. [28] Landsman Z.On the tail mean-variance optimal portfolio selection[J]. Insurance: Mathematics and Economics, 2010, 46(3): 547-553. [29] Kamdem J S. Value-at-Risk and expected shortfall for linear portfolios with elliptically distributed risk factors[J]. International Journal of Theoretical and Applied Financ, 2005, 8(5): 537-551. [30] Kamdem J S. VaR and ES for linear portfolios with mixture elliptic distributions risk factors[J]. Computing and Visualization in Science,2007,10(4): 197-210. [31] 陈荣达,余乐安.多元混合正态分布情形下的外汇期权组合的非线性VaR模型[J].系统工程理论与实践, 2009,29(12): 65-72. [32] Gradshteyn I S,Ryzhik I M. Table of integrals, series, and products[M].New York: Academic Press, 2007. [33] Landsman Z. Minimization of the root of a quadratic functional under a system of affine equality constraints with application to portfolio management[J].Journal of Computational and Applied Mathematics, 2008, 216(2): 319-327. [34] Jiang Chunfu,Yang Yukuan. Tail conditional variance of portfolio and applilations in Financial Engineering[J].Systems Engineering Procedia, 2011, 2: 213-221. [35] Peel D,Mclachlan G J. Robust mixture modelling using the t distribution[J]. Statistics and Computing, 2000, 10: 339-348. |