主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2013, Vol. 21 ›› Issue (5): 29-39.

• 论文 • 上一篇    下一篇

基于高频数据的中国股市跳跃特征实证分析

唐勇, 张伯新   

  1. 福州大学管理学院, 福建 福州 350108
  • 收稿日期:2012-03-10 修回日期:2013-03-24 出版日期:2013-10-30 发布日期:2013-10-15
  • 基金资助:
    国家自然科学基金资助项目(71171056,70973021);福建省社科规划项目(2011B135)

The Empirical Analysis of Jump Characteristics of China’s Stock Market Based on High Frequency Data

TANG Yong, ZHANG Bo-xin   

  1. School of Management, Fuzhou University, Fuzhou 350108, China
  • Received:2012-03-10 Revised:2013-03-24 Online:2013-10-30 Published:2013-10-15

摘要: 研究跳跃的内在机制和理清不同类型的风险对波动估计和建模非常重要,这是风险管理的核心内容。当前,利用高频数据这方面研究仍然还不成熟,还有丰富的内容期待探索。文章基于非参数方法,结合A-J跳跃检验统计量,构建新的跳跃方差和连续样本路径方差、对跳跃方差建模。利用上证综指高频数据,对跳跃方差统计特征、跳跃方差贡献、跳跃幅度以及跳跃与经济信息关系进行分析。结果显示:跳跃方差存在尖峰厚尾与波动集聚性;在不同的抽样频率下,跳跃方差对总方差的贡献程度相近;正向、负向跳跃幅度不对称,剥离跳跃后的标准化收益率接近正态分布;经济信息公布与跳跃总是正相关的,并对一些异常现象给予解释。依据波动和跳跃的复杂性,此项研究有助于投资者优化投资策略和为监管部门提供监管基础。

关键词: 高频数据, 跳跃, 波动建模

Abstract: Studying the internal mechanism of jump and sorting out the different types of risk, is important for estimating and modeling volatility, which is the core content of risk management. Currently, based on high frequency data, the research in this field is still in its infancy, so there are quite rich contents looking forward to be explored. Based on non-parametric approach, the new jump variance and continuous sample path variance are constructed and jump variance is modeled by combining A-J jump detection statistic. With high frequency data from Shanghai composite index, the empirical analyses are carried out. It turns out that the jump variance show leptokurtic, heavy tail and volatility clusters; the contribution of jump variance to whole variance nearly equals for different sampling frequency; the positive jump and negative jump are asymmetry and the adjusted returns are nearly normal distribution; the correlation between jumps and economic information release is always positive. Further,some abnormal phenomenas are explained. This study can be applied to help investors optimize strategy of investment and provide regulatory basis for the regulatory authorities, according to complexity of the volatility and jump.

Key words: high frequency data, jump, volatility modeling

中图分类号: