主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2013, Vol. 21 ›› Issue (5): 165-171.

• 论文 • 上一篇    下一篇

广义不确定性下广义博弈中NS均衡的存在性

杨哲1, 蒲勇健2   

  1. 1. 上海财经大学经济学院, 上海 200433;
    2. 重庆大学经济与工商管理学院, 重庆 400044
  • 收稿日期:2011-07-04 修回日期:2012-08-28 出版日期:2013-10-30 发布日期:2013-10-15

Existence of NS Equilibrium Points in Generalized Games Under Generalized Uncertainty

YANG Zhe1, PU Yong-jian2   

  1. 1. School of Economics, Shanghai University of Finance and Economics, Shanghai 200433, China;
    2. College of Economics and Business Administration, Chongqing University, Chongqing 400044, China
  • Received:2011-07-04 Revised:2012-08-28 Online:2013-10-30 Published:2013-10-15

摘要: 把不确定性引入广义博弈的研究之中,在此博弈中,局中人策略之间存在相互影响,局中人的策略可以改变不确定参数的变化范围,而且局中人的支付函数和策略可行反应映射都受到不确定参数的作用,此类型博弈定义为广义不确定性下的广义博弈问题。进一步定义出此类型博弈中的NS均衡,并且凭借Fan-Glicksberg不动点定理,证明此均衡点的存在性。最后给出算例验证其可行性。

关键词: 广义博弈, 广义不确定性, NS均衡, 存在性

Abstract: Uncertainty is introduced in generalized games is this paper. In the game, people's strategies are chteracted on each other, and can change the uncertain parameter variation range. What's more, payoff functions and feasible mappings of strategy are affected by uncertain parameters. This kindof game is defined by generalized games under generalized uncertainty. Further, NS equilibrium points in generalized games under generalized uncertainty are defined, and the existence theorem of NS equilibrium points is proved by mean of Fan-Glicksberg fixed point theorem. Finally, a numeric example is given to demonstrate the feasibility.

Key words: generalized games, generalized uncertainty, NS equilibrium, existence

中图分类号: