[1] Newey W K, Powell J L. Asymmetric least squares estimation and testing[J]. Econometrica, 1987, 55(4): 819-847. [2] Jones M C. Expectiles and m-quantiles are quantiles[J]. Statistics and Probability Letters, 1994, 20(2): 149-153. [3] Yao Qiwei, Tong H. Asymmetric least squares regression estimation: A nonparametric approach[J]. Nonparametric Statistics, 1996, 6(2-3): 273-292. [4] Efron B. Regression percentiles using asymmetric squared error loss[J]. Statistica Sinica, 1991, 1: 93-125. [5] Kuan C M, Yeh J H, Hsu Y C. Assessing value at risk with CARE, the condional auto regressive expectile models[J]. Journal of Econometrics, 2009, 150(2): 291-270. [6] Taylor J W. Estimating value at risk and expected shortfall using expectiles[J]. Journal of Financial Econometrics, 2008, 6(2): 231-252. [7] 姚宏伟.基于expectile的线性异方差模型[D].合肥:中国科学技术大学, 2011. [8] 谢尚宇.金融风险度量与风险管理的统计建模及其应用[D].北京:中国科学院研究生院, 2011. [9] Aigner D J, Amemiya T, Poirier D J. On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function[J]. International Economic Review, 1976, 17(2): 377-396. [10] Engle R F, Manganelli S. CAViaR: Conditional autoregressive value at risk by regression quantiles[J]. Journal of Business and Economic Statistics, 2004, 22(4): 367-381. [11] Kuester K, Mittnik S, Paolella M S. Value-at-risk prediction: A comparison of alternative strategies[J]. Journal of Financial Econometrics, 2006, 4(1): 53-89. [12] Koenker R W, Bassett G W. Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50. [13] 陈磊, 曾勇, 杜化宇.石油期货收益率的分位数建模及其影响因素分析[J].中国管理科学, 2012, 20(3):35-40. [14] Berkowitz J, Christofferersen P, Pelletier D.Evaluating value-at-risk models with desk-level data[J].Management Science, 2009, 1:1-15. [15] Efron B, Tibshirani R. An introduction to Bootstrap[M]. New York: Chapman and Hall, 1993. |