[1] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning data mining, inference, and predicition[M]. Berlin:Springer-Verlag, 2003. [2] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26 (1): 32-42. [3] Wei Liwei, Chen Zhenyu, Li Jianping. Evolution strategies based adaptive L-p LS-SVM[J]. Information Sciences, 2011, 181(14): 3000-3016. [4] Lanckriet G, Cristianini N, Bartlett P, et al. Learning the kernel matrix with semidefinite programming[J]. Journal of Machine Learning Research, 2004, 5:27-72. [5] 赵燕平, 李超.网络安全信息挖掘中的特征选择与专利分析研究[J].中国管理科学, 2004, 12(z1):514-518. [6] Guyon I, Elisseeff A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003, 3:1157-1182. [7] Weston J, Elisseeff A, Schцlkopf B, et al. Use of the zero norm with linear models and kernel methods[J]. Journal of Machine Learning Research, 2003, 3:1439-1461. [8] Tibshirani R.Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, 1996, 267-288. [9] Zhang Chunkai, Hu Hong. Feature selection in SVM based on the hybrid of enhanced genetic algorithm and mutual information[M]//Torra V, Narukawa Y, Valls A, et al.Modeling Decisions for Artificial Intelligence. Berlin:Springer, 2006. [10] Lian Heng. On feature selection with principal component analysis for one-class SVM[J]. Pattern Recognition Letters, 2012, 33(9): 1027-1031. [11] Li Boyang, Wang Qianwei, Hu Jinglu. Feature subset selection: a correlation-based SVM filter approach[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2011, 6(2): 173-179. [12] He Qiang, Xie Zongxia, Hu Qinghua, et al. Neighborhood based sample and feature selection for SVM classification learning[J]. Neurocomputing, 2011, 74(10): 1585-1594. [13] Chen Feilong, Li F C. Combination of feature selection approaches with SVM in credit scoring[J]. Expert Systems with Applications, 2010, 37(7): 4902-4909. [14] Ichino M, Sklansky J. Optimum feature selection by zero-one integer programming[J]. IEEE Transaction on Systems, 1984, 14: 737-746. [15] Foroutan I, Sklansky J. Feature selection for automatic classification of non-Gaussian data[J].IEEE Transaction on Systems, 1987, 17(2):187-198. [16] Kohavi R, John G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1-2):273-324. [17] Tenenbaum J, Silva V, Langford J. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 290(5500):2319-2323. [18] Balasubramanian M, Schwartz E L. The isomap algorithm and topological stability[J]. Science, 295(5552):7. [19] Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 290(5500):2323-2326. [20] Rosipal R, Girolami M, Trejo L. Kernel PCA for feature extraction of event related potentials for human signal detection performance[M]//Malmgren B A H, Borga M, Niklasson L.Artificial Neural Networks in Medicine and Biology.Berlin:Springer, 2000. [21] Rosipal R, Trejo L. Kernel partial least squares regression in reproducing kernel hilbert space[J]. The Journal of Machine Learning Research, 2002, 2:97-123. [22] Saunders C, Gammerman A, Vovk V. Ridge regression learning algorithm in dual variables[C]. Proceedings of the 15th International Conference on Machine Learning, Sydney, July 8-12, 2002. [23] Chen Zhenyu, Li Jianping. A multiple kernel support vector machine scheme for simultaneous feature selection and rule-based classification[J]. Artificial Intelligence in Medicine, 2007, 41(2):161-175. [24] Choi H, Choi S.Robust kernel isomap[J]. Pattern Recognition, 2007, 40(3):853-862. [25] Yan Shuicheng, Xu Dong, Zhang Benyu, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Published by the IEEE Computer Society, 2007, 29(1):40-51. [26] Graepel T.Kernel matrix completion by semidefinite programming[J].Lecture notes in computer science, Springer, 2002, 2415:694-699. [27] Weinberger K Q, Sha F, Saul L K. Learning a kernel matrix for nonlinear dimensionality reduction[C]. Proceedings of the twenty-first international conference on Machine learning', Banff, July 4-8, 2004. [28] Weinberger W, Packer B, Saul L. Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization[C]. Proceedings of the tenth international workshop on artificial intelligence and statistics, Barbados, Jan 6-8, 2005. [29] Sha Fei, Saul L. Analysis and extension of spectral methods for nonlinear dimensionality reduction[C]. Proceedings of the 22nd international conference on Machine learning, Bonn, August 7-11, 2005. [30] Freund R, Mizuno S.Interior point methods: current status and future directions[R].Warking Paper, Operations Research Center, 1996. [31] Mason L, Bartlett P, Baxter J. Improved generalization through explicit optimization of margins[J]. Machine Learning, 2000, 38(3):243-255. [32] Kong E B, Dietterich T G. Error-correcting output coding corrects bias and variance[C]. Proceedings of the Twelfth International Conference on Machine Learning, California, July 9-12, 1995. [33] Breiman L.Bias, variance and arcing classifiers[R]. Working Paper, University of California, 1996. [34] William H. Wolberg and O L. Mangasarian: Multisurface method of pattern separation for medical diagnosis applied to breast cytology[J]. Proceedings of the National Academy of Sciences, 1990, 87(23): 9193-9196. [35] 余乐安, 汪寿阳. 基于核主元分析的带可变惩罚因子最小二乘模糊支持向量机模型及其在信用分类中的应用[J]. 系统科学与数学, 2009, 29(10): 1311-1326. |