主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2014, Vol. 22 ›› Issue (4): 83-91.

• 论文 • 上一篇    下一篇

含非连续性信息多属性案例中的决策知识发现方法

梁昌勇1, 顾东晓1,3, 程文娟1, 杨昌辉1,4, 顾佐佐2   

  1. 1. 合肥工业大学管理学院, 安徽 合肥 230009;
    2. 安徽大学艺术与传媒学院, 安徽 合肥 230011;
    3. 南京大学信息管理学院, 江苏 南京 210093;
    4. 安徽省产业转移与创新发展人文社会科学重点研究基地, 安徽 合肥 230009
  • 收稿日期:2012-06-30 修回日期:2013-05-07 出版日期:2014-04-20 发布日期:2014-04-23
  • 作者简介:梁昌勇(1965- ),男(汉族),安徽肥西人,合肥工业大学管理学院教授,博士生导师,研究方向:管理信息系统、智能决策方法、行为决策等.
  • 基金资助:

    国家自然科学基金资助项目(71331002,71301040,71271072,71171072,51274078);中国博士后科学基金面上项目(2013M541651);安徽省社会科学重点研究基地重点项目(SK2013A148,2013AJRW0131);合肥工业大学青年教师创新项目(2013HGQC0026)

A Decision Knowledge Discovery Method for Multi-attribute Cases with Non-continuous Features

LIANG Chang-yong1, GU Dong-xiao1,3, CHENG Wen-juan1, YANG Chang-hui1,4, GU Zuo-zuo2   

  1. 1. School of Management at Hefei University of Technology, Hefei 230009, Chian;
    2. School of Arts and Media, Anhui University, Hefei 230011, China;
    3. School of Information Management at Nanjing University, Nanjing 210093, China;
    4. Anhui Provincial Industrial Transfer and Innovation Development Key Research Institute of Humanities Social Science, Hefei 230009, China
  • Received:2012-06-30 Revised:2013-05-07 Online:2014-04-20 Published:2014-04-23

摘要: 医疗决策案例中非连续性属性信息大量存在,含该类信息的案例知识发现是多属性案例决策的关键和难点。该文研究了含非连续性属性信息案例中的决策知识发现,将条件概率和GAs融合技术整合到案例推理方法之中,开发了KNN的延伸方法——CRMGACP法。该方法的核心是基于Gas进行权重获取和基于融合条件概率的改进相似度算法进行案例知识获取。在某大型综合医院收集数据,获取有效数据300条,基于VC++开发实现的BC-CBRsys平台进行了实验研究,结果表明CRMGACP比其他常见方法具有更好的性能,在多个统计指标上展示出显著的优势。显然,改进的案例决策方法克服了含非连续性信息案例决策知识难以获取的问题,在临床决策领域具有广阔的前景。

关键词: 复杂多属性决策, 公共卫生管理, 知识发现, 离散变量, 案例推理

Abstract: The information with non-continuous features is ubiquitous in diagnosis and treatment decision making cases. The knowledge acquisition of the cases with this kind of feature has always been a key and bottleneck in multi-attribute case decision making. In this paper, conditional probability and GAs are integrated into case-based reasoning technology to develop an extension method of traditional KNN——CRMGACP algorithm, which includes a GAs-based weight determination method and an improved similarity algorithm integrating the conditional probability. Collecting data from AH Hospital, which is one of large-scale hospitals in Anhui province, CancerCBRSys is developed as the experimental tool for tests. Experimental study is competed by comparing the performance amongst four different case-based reasoning methods. The results show that CRMGACP has the best performance and shows significant advantage in various statistics. In general, CRM-GACP solves the problem of knowledge discovery from non-continuous cases and is hopeful to be a powerful decision-making tool in the research area of clinical decision making.

Key words: complex multi-attribute decision making, public healch mangement, knowledge discovery, discrete variable, case-based reasoning

中图分类号: