[1] Black F, Scholes M. The pricing of options and corporate liabilities [J]. Journal of Political Economy, 1973, 81(3): 637-657.[2] Merton R C. Theory of rational option pricing [J]. The Bell Journal of Economics and Management Science, 1973, 4(1): 141-183.[3] Leland H E. Option pricing and replication with transaction costs [J]. Journal of Finance, 1985, 40(5): 1283-1301.[4] Damgaard A. Computation of reservation prices of options with proportional transaction costs [J]. Journal of Economic Dynamics and Control, 2006, 30(3):415-444.[5] Tokarz K, Zastawniak T. American contingent claims under small proportional transaction costs [J]. Journal of Mathematical Economics, 2006, 43(1):65-85.[6] Peters E E. Fractal structure in the capital markets [J]. Financial analyst Journal, 1989, 7(32): 434-453.[7] 赵巍,何建敏.股票价格遵循分数Ornstein-Uhlenback过程的期权定价模型 [J].中国管理科学,2007,15 (3):1-5.[8] 刘善存,宋殿宇,金华.分数布朗运动下带违约风险的可转换债券定价 [J].中国管理科学, 2011, 19(6): 25-30.[9] Necula C. Option pricing in a fractional brownian motion environment [R]. Working paper of the Academy of Economic Studies, Bucharest (Romania), 2002.[10] Xiao Weihin, Zhang Weiguo, Xu Weijun, et al. The valuation of equity warrants in a fractional Brownian environment [J]. Physica A, 2012, 391(4):1742-1752.[11] 代军.权证定价中B-S模型与CSR 模型的比较[J].中国管理科学, 2009, 17(5): 20-26.[12] 吴鑫育,周海林,马超群,等. 基于随机贴现因子方法的权证定价研究 [J].中国管理科学, 2012, 20(4): 1-7.[13] Lin S J. Stochastic analysis of fractional Brownian motions [J]. Stochastics and Stochastics Reports, 1995, 55(1-2): 121-140.[14] Duncan T E, Hu Yaozhong, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion I. Theory [J]. SIAM Journal on Control and Optimization, 2000, 38(2): 582-612.[15] Rogers L C G. Arbitrage with fractional Brownian motion [J]. Mathematical Finance,1997, 7(1):95-105.[16] Bjrk T, Hult H. A note on Wick products and the fractional Black-Scholes model [J]. Finance and Stochastic, 2005, 9(2):197-209.[17] Tudor C. Some properties of the sub-fractional Brownian motion [J]. Stochastics, 2007, 79(5):431-448.[18] Tudor C. Inner product spaces of integrands associated to sub-fractional Brownian motion [J]. Statistics and Probability Letters, 2008, 78(14):2201-2209.[19] Tudor C. Sub-fractional Brownian motion as a model in finance. Working Paper,Ann. Univ. Bucuresti, Mathematica, 2008.[20] Yan Litan, Shen Gangjun, He Kun. It's formula for the sub-fractional Brownian motion [J]. Communication on Stochastic Analysis, 2011, 5(1):135-159.[21] Nualart D, Taqqu M S. Wick-It formula for regular processes and applications to the Black and Scholes formula [J]. Stochastics: An International Journal of Probability and Stochastic Processes, 2008, 80(5): 477-487.[22] Hull J C. Options, futures, and other derivatives [M].5th ed.New Jersey: Prentice Hall College Div, 5th edition, 2002. |