主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2014, Vol. 22 ›› Issue (5): 121-130.

• 论文 • 上一篇    下一篇

搭接网络中的路长悖论及其特性研究

阚芝南1, 孔峰2, 乞建勋1   

  1. 1. 华北电力大学经济与管理学院, 北京 102206;
    2. 华北电力大学经济与管理学院, 河北 保定 071003
  • 收稿日期:2012-07-05 修回日期:2013-05-06 出版日期:2014-05-20 发布日期:2014-05-14
  • 作者简介:阚芝南(1987-),女(汉族),江苏扬州人,华北电力大学经济与管理学院博士生,研究方向:管理科学与工程.
  • 基金资助:

    国家自然科学基金资助项目 (711171079)

Tresearch on Path Lengths Paradox and Its Characteristics Under Spliced Network

KAN Zhi-nan1, KONG Feng2, QI Jian-xun1   

  1. 1. Economics and Management School of North China Electric Power University, Beijing 102206, China;
    2. Economics and Management School of North China Electric Power University(Baoding), Baoding 071003, China
  • Received:2012-07-05 Revised:2013-05-06 Online:2014-05-20 Published:2014-05-14

摘要: 本文发现在搭接网络中存在“工序间加入不同表现形式的同一时间约束,可能会产生不同的最大路长”这个悖论。通过研究此悖论形成原因从而提出搭接网络的一种新表示方法。该方法不但与经典的CPM网络在表示形式上完全统一,而且在求解时间参数及关键路线的方法上也保持一致。该新表示法使得CPM网络中许多基础理论可以推广到搭接网络中来,例如工序的总时差Tij等于关键路长μ与过该工序(ij)的最大路长μij之差(μ-μij);任意一条路线μ上自由时差的和都等于关键路长μ与该条路的路长之差(μ-μij)等。利用这些定理与规律,本文解决了搭接网络中如何正确求解时间参数问题,提出在搭接网络中评估关键路长与次关键路长之差的简便方法以及求解搭接网络次关键路线的一系列精确算法,并通过算例表明这些方法在搭接网络应用中的具有有效性与简便性。

关键词: 搭接网络, 最大路长, 机动时间, CPM网络

Abstract: A paradox in spliced network is found in this paper, that is when adding a time constraint but in two different types between activities may produce different longest path. A whole new presentation of spliced network is given by studying the paradox. The new spliced network presentation is quite simple but also unified with the classic CPM network in forms. This unification not only helps to solve the problems of how to calculate the time parameters, activity floats and how to find the critical path in spliced network, but also makes extension of the theory found in CPM network to spliced network becomes possible. For example, the activity total float Tij equals to the critical path length μ minus the longest path length μij through activity(ij), that is (μ-μij); the sum of activity free float of any path μ equals to the critical path lengthμ minus the length of this path μ, that is (μ-μij). By using these extended theory, three convenient methods are designed to detect the difference of critical and sub-critical path lengths and to find out the sub-critical path. These methods are illustrated both effective and convenient in spliced network applications.

Key words: spliced network, longest path, activity floats, CPM network

中图分类号: