[1] Andersen T G, Bollerslev T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 1998, 39(4): 885-905.[2] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica,2003, 71(2): 579-625.[3] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2009, 7 (2): 174-196.[4] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3(1–2): 125-144.[5] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2004, 2 (1): 1-37.[6] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower variation[J]. Journal of Financial Econometrics, 2006, 4 (1): 1-30.[7] Todorov V, Bollerslev T. Jumps and betas: A new framework for disentangling and estimating systematic risks[J]. Journal of Econometrics,2010, 157(2): 220-235.[8] 陈浪南,孙坚强. 股票市场资产收益的跳跃行为研究[J]. 经济研究, 2010,(4): 54-66.[9] 沈根祥. 沪深300指数跳的逐点检验及动态分析[J]. 中国管理科学, 2012,(1): 43-50.[10] Andersen T G, Bollerslev T, Diebold F X. Roughing it up: including jump components in the measurement, modeling, and forecasting of return volatility[J]. Review of Economics and Statistics, 2007, 89(4): 701-720.[11] Bollerslev T, Tauchen G, Zhou Hao. Expected Stock Returns and Variance Risk Premia[J]. Review of Financial Studies. 2009, 22 (11): 4463-4492.[12] Andersen T G, Bollerslev T, Huang X. A reduced form framework for modeling volatility of speculative prices based on realized variation measures[J]. Journal of Econometrics, 2011, 160(1): 176-189.[13] Corsi F, Reno R. Discrete-time volatility forecasting with persistent leverage effect and the link with continuous-time volatility modeling[J]. Journal of Business & Economic Statistics,2012,30(3):368-380.[14] 徐正国,张世英. 调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J]. 系统工程,2004,22(8):60-63.[15] 魏宇,余怒涛. 中国股票市场的波动率预测模型及其SPA检验[J]. 金融研究, 2007,(07):138-150.[16] 魏宇. 沪深300股指期货的波动率预测模型研究[J]. 管理科学学报, 2010,(2): 66-76.[17] 张小斐,田金方. 异质金融市场驱动的已实现波动率计量模型[J]. 数量经济技术经济研究, 2011,(9): 140-153.[18] 王春峰,姚宁,房振明,等. 中国股市已实现波动率的跳跃行为研究[J]. 系统工程, 2008,(2): 1-6.[19] 魏宇. 沪深300股指期货的波动率预测模型研究[J]. 管理科学学报, 2010,13(2):66-76.[20] Engle R F, Russell J R. Autoregressive conditional duration: A new model for irregularly spaced transaction data[J]. Econometrica, 1998, 66(5): 1127-1162.[21] Lee S S, Mykland P A. Jumps in financial markets: A new nonparametric test and jump dynamics[J]. Review of Financial studies, 2008, 21(6): 2535-2563.[22] Koopman S J, Jungbacker B, Hol E. Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements[J]. Journal of Empirical Finance, 2005, 12(3): 445-475.[23] Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business and Economic Statistics, 2006, 24(2): 127-161.[24] Diebold F X, Mariano R S. Comparing predictive accuracy[J]. Journal of Business & Economic Statistics, 2002, 20(1): 134-144.[25] 王天一,黄卓. 高频数据波动率建模——基于厚尾分布的Realized GARCH模型[J]. 数量经济技术经济研究, 2012,(5): 149-161.[26] Mincer J A, Zarnowitz V. The evaluation of economic forecasts.Working Paper, NBER, 1969. |