[1] Buckinx W, Van den Poel D. Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting [J]. European Journal of Operational Research, 2005, 164(1): 252-268.[2] Verbeke W, Dejaeger K, Martens D, et al. New insights into churn prediction in the telecommunication sector: A profit driven data mining approach [J]. European Journal of Operational Research, 2012, 218(1): 211-229.[3] Glady N, Baesens B, Croux C. Modeling churn using customer lifetime value [J]. European Journal of Operational Research, 2009, 197(1): 402-411.[4] Tsai C, Lu Y. Customer churn prediction by hybrid neural networks [J]. Expert Systems with Applications, 2009, 36(10): 12547-12553.[5] 朱帮助,张秋菊,邹昊飞,等. 基于OSA算法和GMDH网络集成的电子商务客户流失预测 [J]. 中国管理科学,2011,19(5):64-70.[6] 朱帮助. 基于SMC-RS-LSSVM的电子商务客户流失预测模型 [J]. 系统工程理论与实践,2010,30(11):1960-1967.[7] Kisioglu P, Topcu Y. Applying Bayesian belief network approach to customer churn analysis: A case study on the telecom industry of Turkey [J]. Expert Systems with Applications, 2011, 38: 7151-7157.[8] 罗彬,邵培基,罗尽尧, 等. 基于蚁群算法的成本敏感线性集成多分类器的客户流失研究 [J]. 中国管理科学,2010,18(3):58-67.[9] 罗彬,邵培基,罗尽尧, 等. 基于多分类器动态集成的电信客户流失预测 [J]. 系统工程学报,2010,25(5):703-711.[10] Chen Zhenyu, Fan Zhiping, Sun Minghe. A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data [J]. European Journal of Operational Research, 2012, 223(2): 461-472.[11] 夏国恩,金炜东. 基于支持向量机的客户流失预测模型 [J]. 系统工程理论与实践,2008,1(1):71-77.[12] Huang Bingquan, Kechadi T, Buckley B, et al. A new feature set with new window techniques for customer churn prediction in land-line telecommunications [J]. Expert Systems with Applications, 2010, 37(5): 3657-3665.[13] 应维云,覃正,赵宇, 等. SVM方法及其在客户流失预测中的应用研究 [J]. 系统工程理论与实践,2007, 27(7):105-110.[14] 蒙肖莲,蔡淑琴,杜宽旗,等. 行业银行客户流失预测模型研究 [J]. 系统工程,2004,22(12):67-71.[15] 罗彬,邵培基,罗尽尧, 等. 基于竞争对手反击的电信客户流失挽留研究 [J]. 管理科学学报,2011,14(8):17-33.[16] 胡理增,陈建军. 无约束条件下多客户流失挽救最优化决策 [J]. 中国管理科学,2009,17(6):39-43.[17] 胡理增,于信阳,张长赋,等. 基于经费约束和广义客户终身价值最大化的多客户流失挽救模型 [J]. 系统工程理论与实践,2009,29(2):63-69.[18] Mozer M, Wolniewicz R, Grimes D, et al. Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry [J]. IEEE Transactions on Neural Networks, 2000, 11(3): 690-696.[19] Hwang H, Jung T, Suh E. An LTV model and customer segmentation based on customer value: A case study on the wireless telecommunication industry [J]. Expert Systems with Applications, 2004, 34(1): 231-241.[20] Marsland S. Machine Learning [M]. Florida: Chapman & Hall/CRC, 2009.[21] Valiant L G. A theory of the learnable [J]. Communications of the ACM, 1984, 27(11): 1134-1142.[22] Schapire R. The strength of weak learnability [J]. Machine Learning, 1990, 5(2): 197-227.[23] Freund Y. Boosting a weak learning algorithm by majority [J]. Information and Computation, 1995, 121(2): 256-285.[24] Freund Y, Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.[25] Freund Y, Schapire R. Experiments with a new boosting algorithm [J]. Machine Learning, 1996, 96:148-156.[26] Schapire R, Singer Y. Improved boosting algorithms using confidence-rated predictions [J]. Machine Learning, 1999,37(3):297-336. |