[1] Cramér H. On the mathematical theory of risk[M]. Stockhole:Skandia Jubilee Volume, 1930.[2] Feller W. An introduction to probability theory and its applications[M]. Vol.2,2nd ed, New York: Wiley, 1971.[3] Gerber H U. An introduction to mathematical risk theory[M]. Philadelphia: S. S. Huebner Foundation for Insurance Education, University of Pennsylvania, 1979.[4] Embrechts P, Klüppelberg C, Mikosch T. Modelling extremal events for insurance and finance[M]. Berlin: Springer, 1997.[5] Rolski T, Schmidli H, Schmidt V, et al. Stochastic processes for insurance and finance[M]. New York: Wiley & Sons, 1999.[6] Grandell J. Aspects of risk theory[M]. Berlin: Springer, 1991.[7] Goldie C M, Klüppelberg C. Subexponential distributions(A practical guide to heavy tails: Statistical techniques for analysing heavy tailed distributions)[M]. Boston: Birkhuser, 1998.[8] Asmussen S. Risk theory in a Markovian environment[J]. Scandinavian Actuarial Journal, 1989, 2: 69-100.[9] Asmussen S. Subexponential asymptotics for stochastic processes: Extremal behaviour, stationary distributions and first passage probabilities[J]. Annals of Applied Probability, 1998, 8(2): 354-374.[10] Kaas R, Goovaerts M, Dhaene J, et al. Modern actuarial risk theory[M]. Dordrecht: Kluwer Academic Publishers, 2001.[11] Li Zehui, Zhu Jinxia, Chen Feng. Study of a risk model based on the entrance process[J]. Statistics & Probability Letters, 2005, 72(1): 1-10.[12] Li Zehui, Kong Xinbing. A new risk model based on policy entrance process and its weak convergence property[J]. Applied Stochastic Models in Business and Industry, 2007, 23(3): 235-246.[13] Xiao Hongmin, Li Zehui, Liu Weiwei. The limit behavior of a risk model based on entrance processes[J]. Computers & Mathematics with Applications, 2008, 56(5): 1441-1448.[14] Chen Feng, Zhu Jinxia, Li Zehui. Upper bounds for the ruin probabilities of the entrance-based risk model[J]. Communications in Statistics - Theory and Methods, 2008, 37(16): 2634-2652.[15] 白建明, 肖鸿民. 一类新的累积冲击模型的性质及在保险风险理论中的应用[J]. 兰州大学学报(自然科学版), 2008, 44(1): 132-136.[16] 肖鸿民, 白建明. 重尾索赔条件下基于进入过程的保险风险模型的破产概率[J]. 山东大学学报(理学版), 2010, 45(10): 122-126.[17] 唐风琴, 李泽慧, 陈进源. 一类基于进入过程的风险模型的精细大偏差[J]. 数学物理学报, 2011, 31A(3): 737-751.[18] 唐风琴, 白建明. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. 山东大学学报(理学版), 2013, 48(1): 100-106.[19] Bingham N H, Goldie C M, Teugels J L. Regular variation[M]. Cambridge: Cambridge University Press, 1987. |