主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2015, Vol. 23 ›› Issue (1): 43-49.doi: 10.16381/j.cnki.issn1003-207x.2015.01.006

• 论文 • 上一篇    下一篇

非对称国家越境污染最优控制模型

刘利源1, 时政勗2, 宁立新3   

  1. 1. 上海立信会计学院金融学院, 上海 201620;
    2. 广岛修道大学人间环境学部, 日本 广岛 731-3195;
    3. CI协同组合, 日本 广岛, 733-0025
  • 收稿日期:2012-10-09 修回日期:2014-06-09 出版日期:2015-01-20 发布日期:2015-01-21
  • 作者简介:刘利源(1968-),男(汉族),湖南衡阳人,上海立信会计学院金融学院,广岛县立大学经济学博士,研究方向:宏观经济、金融监管.
  • 基金资助:

    上海市教育委员会重点学科建设项目资助(J51703)

Optimal Control Model of Trans-boundary Pollution Emissions in Two Asymmetric Countries

LIU Li-yuan1, SHI Zheng-xu2, NING Li-xin3   

  1. 1. School of Finance, Shanghai Lixin University of Commerce, Shanghai 201620, China;
    2. School of Human Environmental Studies, Hiroshima Shudo University, Hiroshima 731-3195, Japan;
    3. CI Cooperative, Hiroshima 733-0025, Japan
  • Received:2012-10-09 Revised:2014-06-09 Online:2015-01-20 Published:2015-01-21

摘要: 环境问题已成为世界共同面对的问题,应对越境污染需要国际合作,但发达国家和发展中国家对"共同但有区别的责任"理解上存在差异。本文是运用博弈理论研究越境污染的最优控制,基于博弈理论的线性战略和非线性战略构建非对称两国污染物质流量及污染物质存量的控制模型。微分博弈的研究分析结果表明:在一定条件下,非对称两国非合作控制污染物质排放量的稳定状态的污染物质存量小于其合作控制污染物质排放量的稳定状态的污染物质存量的可能性存在。

关键词: 越境污染, 污染物质流量, 污染物质存量, 微分博弈, 线性战略, 非线性战略

Abstract: Environmental problem has become an international issue. Handling trans-boundary pollution calls for international cooperation, but the developed countries have different understandings in the principle of "common but differentiated responsibilities" from that of the developing countries. The game theory is applied to study the optimal control of trans-boundary pollution, based on the control model of pollution flow and pollution stock between asymmetric countries under linear strategies and non-linear strategies. The findings of dynamic differential game indicate: under certain circumstances, pollution stock in the steady state of non-cooperative strategy to control pollution emissions is lower than that of cooperative strategy to control pollution emission.

Key words: trans-boundary pollution, pollution flow, pollution stock, dynamic differential game, linear strategies, non-linear strategies.

中图分类号: