[1] Kariv O, Hakimi S L. An algorithmic approach to network location problems (I): The p-centers [J]. SIAM Journal on Applied Mathematics, 1979, 37(3): 513-538.[2] Hsu W L, Nemhauser G L. Easy and hard bottleneck location problems [J]. Discrete Applied Mathematics, 1979, 1(3): 209-215.[3] Hochbaum D S, Shmoys D B. A best possible approximation algorithm for the k-center problem [J]. Mathematics of Operations Research, 1985, 10(2):180-184.[4] Chen R, Handler G Y. Relaxation method for the solution of the mini-max location-allocation problem in Euclidean space [J]. Naval Research Logistics, 1987, 34(6):775-788.[5] Averbakh I, Berman O. Algorithms for the robust 1-center problem on a tree [J]. European Journal of Operational Research, 2000, 123(2):292-302.[6] Handler G Y, Mirchandani P B. Location on networks: Theory and algorithms [M]. Cambridge, MA: MIT Press, 1979.[7] Frank H. Optimum locations on a graph with probabilistic demands [J]. Operations Research,1966, 14(3):409-421.[8] Frank H. Optimum locations on a graph with correlated normal demands [J]. Operations Research,1967, 15(3):552-557.[9] Wesolowsky G O. Probabilistic weights in the one-dimensional facility location problem [J]. Management Science, 1977, 24(2):224-229.[10] Bhatia R, Guha S, Khuller S, et al. Facility location with dynamic distance functions [J]. Journal of Combinatorial Optimization, 1998, 2(3):199-217.[11] Charikar M, Khuller S, Mount D M, et al. Algorithms for facility location problems with outliers [C]. Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, USA, January 7-9,2001.[12] Chaudhuri S., Garg N, Ravi R. The p-neighbor k-center problem [J]. Information Processing Letters, 1998, 65(3):131-134.[13] Hochbaum D S, Shmoys D B. A unified approach to approximate algorithms for bottleneck problems [J]. Journal of the ACM, 1986, 33(3):533-550.[14] Lim A, Rodrigues B, Wang Fan, et al. K-center problems with minimum coverage [J]. Theoretical Computer Science, 2005, 332(1-3):1-17.[15] Plesník J. A heuristic for the p-center problem in graphs [J]. Discrete Applied Mathematics, 1987, 17(3):263-268.[16] Gørtz I L, Wirth A. Asymmetry in k-center variants [J]. Theoretical Computer Science, 2006, 361(2-3):188-199.[17] Berman O, Drezner Z. A new formulation for the conditional p-median and p-center problems [J]. Operations Research Letters, 2008, 36(4):481-483.[18] Berman O, Simchi-Levi D. Conditional location problems on networks [J]. Transportation Science, 1990, 24(1):77-78.[19] Chen D, Chen R. New relaxation-based algorithms for the optimal solution of the continuous and discrete p-center problems [J]. Computers & Operations Research, 2009, 36(5):1646-1655.[20] Chen D, Chen R. A relaxation-based algorithm for solving the conditional p-center problem [J]. Operations Research Letters, 2010, 38(3):215-217.[21] Gørtz I L. Asymmetric k-center with minimum coverage [J]. Information Processing Letters, 2008, 105(4):144-149.[22] 杨丰梅, 华国伟, 邓猛, 等. 选址问题研究的若干进展[J]. 运筹与管理, 2005, 14(6):1-7.[23] 王非, 徐渝, 李毅学. 离散设施选址问题研究综述[J]. 运筹与管理, 2006, 15(5):64-69.[24] 杨珺, 王玲, 郑娜, 等. 多用途易腐物品配送中心选址问题研究[J]. 中国管理科学, 2011, 19(1):91-99.[25] 杨玉香, 周根贵. 闭环供应链网络设施竞争选址模型研究[J]. 中国管理科学, 2011, 19(5):50-57. |