[1] Jorion P. Value at risk: The new benchmark for managing financial risk[M]. New York: McGraw-Hill. 2007.[2] Morgan J, Riskmetrics: Technical document. Working Paper, Morgan Guaranty Trust Company of New York, 1996.[3] Koenker R, Bassett G W. Regression quantiles[J]. Econometrica, 1978, 46(1): 33-50.[4] Taylor J W. Using exponentially weighted quantile regression to estimate value at risk and expected shortfall[J]. Journal of Financial Econometrics, 2008, 6(3): 382-406.[5] 张瑞锋, 张世英, 唐勇. 金融市场波动溢出分析及实证研究[J]. 中国管理科学, 2006, 14(5): 14-22.[6] 史金凤, 刘维奇, 杨威. 基于分位数回归的金融市场稳定性检验[J]. 中国管理科学, 2011, 19(2): 24-29.[7] 许启发, 蒋翠侠. 分位数局部调整模型及应用[J]. 数量经济技术经济研究, 2011, 28(8): 115-133.[8] 陈磊, 曾勇, 杜化宇. 石油期货收益率的分位数建模及其影响因素分析[J]. 中国管理科学, 2012, 20(3): 35-40.[9] Taylor J W. A quantile regression approach to estimating the distribution of multiperiod returns[J]. Journal of Derivatives, 1999, 7(1): 64-78.[10] Taylor J W. A quantile regression neural network approach to estimating the conditional density of multiperiod returns[J]. Journal of Forecasting, 2000, 19(4): 299-311.[11] White H. Nonparametric estimation of conditional quantiles using neural networks[M]. New York: Computing Science and Statistics, 1992.[12] Feng Yijia, Li Runze, Sudjianto A, et al. Robust neural network with applications to credit portfolio data analysis[J]. Statistics and its interface, 2010, 3(4): 437-444.[13] Cannon A J. Quantile regression neural networks: Implementation in R and application to precipitation downscaling[J]. Computers & Geosciences, 2011, 37(9): 1277-1284.[14] Cannon A J. Neural networks for probabilistic environmental prediction: Conditional density estimation network creation and evaluation (CaDENCE) in R[J]. Computers & Geosciences, 2012, 41(4): 126-135.[15] Takeuchi I, Furuhashi T. Non-crossing quantile regressions by SVM. Proceedings of 2004 IEEE International Joint Conference on Neural Networks, Budapest,Hungary,July 25-29,2004.[16] Li Youjuan, Liu Yufeng, Zhu Ji. Quantile regression in reproducing kernel Hilbert spaces[J]. Journal of the American Statistical Association, 2007, 102(477): 255-268.[17] Shim J, Kim Y, Lee J, et al. Estimating value at risk with semiparametric support vector quantile regression[J]. Computational Statistics, 2012, 27(4): 685-700.[18] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.[19] Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 1995.[20] Huber P J. Robust estimation of a location parameter[J]. Annals of Mathematical Statistics, 1964, 35(1): 73-101.[21] Yuan Ming. GACV for quantile smoothing splines[J]. Computational Statistics and Data Analysis, 2006, 50(3): 813-829.[22] Chen Meiyuan, Chen J E. Application of quantile regression to estimation of value at risk. Working Paper, National Chung-Cheng University, 2002.[23] 王鹏, 魏宇. 中国燃油期货市场的 VaR 与 ES 风险度量[J]. 中国管理科学, 2012, 20(6): 1-8.[24] Kupiec P. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2): 73-84.[25] Christoffersen P F. Evaluating interval forecasts[J]. International Economic Review, 1998, 39(4): 841-862. |