[1] Cont R. Empirical properties of assets returns:Stylized facts and statistical issues [J]. Quantitative Finance, 2001, 1:223-236.[2] 林宇. 典型事实、极值理论与金融市场动态风险测度研究 [J]. 投资研究, 2012, 31(1):41-56.[3] King M, Wadhwani S. Transmission of volatility between stock markets[J]. Review of Financial Studies, 1990, 3(1):5-33.[4] Longin F, Bruno S. Is the correlation in international equity returns constant:1960-1990[J]. Journal of International Money and Finance.1995, 14(1):3-26.[5] 林宇.中国与部分国际股市动态极值风险传导效应研究[J]. 中国管理科学, 2008, 16(4):36-43.[6] 陈王, 魏宇, 淳伟德, 等.中国股市与周边股市波动风险传导效应研究[J]. 中国管理科学, 2011, 19(6):31-39.[7] Hong Yongmiao, Liu Yanhui, Wang Shauyang. Granger causality in risk and detection of extreme risk spillover between financial markets[J]. Journal of Econometrics, 2009, 150(2):271-287.[8] 易文德.基于copula理论的金融风险相依结构模型及应用 [M]. 北京:中国经济出版社, 2011.[9] Nelsen R B. An introduction to copulas[M]. Berlin:Springer, 1999.[10] Bouyé E, Durrleman V, Nikeghbali A, et al. Copulas for finance:A reading guide and some applications[R]. Working Paper, Financial Econometrics Research Center, City University Business School, London, 2000.[11] 韦艳华, 张世英. Copula 理论及其在金融分析上的应用 [M]. 北京:清华大学出版社, 2008.[12] Yi Wende, Lao Shaoyi. Statistical properties of parametric estimators for Markov chain vectors based on copula models [J]. Journal of statistical Planning and Inference, 2010, 140(6):1465-1480.[13] 易文德.基于ARMA-GARCH-COUPULA模型的交易量与股价波动相依关系[J]. 系统管理学报, 2012, 21(5):696-703.[14] 林宇, 陈王. 基于典型事实的金融市场动态极值风险测度与传导效应研究 [M]. 北京:科学出版社, 2013.[15] 吴吉林. 基于机制转换copula模型的股市量价尾部关系研究[J]. 中国管理科学, 2012, 20(5):16-23.[16] 吴吉林, 张二华. 基于机制转换混合copula模型的我国股市间极值相依性[J]. 系统工程理论与实践, 2012, 32(8):1662-1672.[17] 韦艳华, 张世英. 基于copula 函数的金融市场尾部相关性分析[J]. 管理学报, 2005, 2(5):601-605.[18] 任仙玲, 张世英. 基于copula函数的金融市场尾部相关性分析[J]. 统计与信息论坛, 2008, 23(6):66-71.[19] 闫海梅, 王波. 沪深300指数与沪深股市尾部相关性分析[J]. 数学的实践与认识, 2010, 40(22):50-55.[20] Lamoureux C G, Lastrapes W D. Forecasting stock-return variance:Toward an understanding of stochastic implied volatilities [J]. Review of Financial Studies, 1993, 6(2):293-326.[21] Bollerslev T. Generalized autoregressive conditional heteroskeda sticity [J]. Journal of Econometrics, 1986, 31(3):307-327.[22] Glosten L R, Jagannathan R, Runkle D E.On the relation between the expected value and the volatility of the nominal excess return on stocks[J]. The Journal of Finance, 1993, 48(5):1779-1801.[23] Christoffersen P F. Elements of financial risk management [M]. Massachusetts:Academic Press, 2002.[24] Dowd K. Measuring market risk [M]. New Jersey:John Wiley & Sons, Ltd, 2005.[25] Ding Zhuanxin, Granger C W J, Engle R F. A long memory property of stock market returns and a new model [J]. Journal of Empirical Finance, 1993, 1(1):83-106.[26] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3):307-327.[27] Engle R F.Autoregressive conditional heteroskedasticty with estimates of the variance of U. K. inflation [J]. Econometrica, 1982, 50(4):987-1008.[28] Baillie R T, Bollerslev T, Mikkelsen H O. Fractionally integrated generlized autoregressive conditional heteroscedasticity [J]. Journal of Econometrics, 1996, 74(1):3-30.[29] Genest C, MacKay J. The Joy of copulas:bivariate distributions with uniform marginals[J]. The American Statistician, 1986, 40(4):280-280.[30] Hu Ling. Dependence patterns across financial markets:A mixed copula approach[J]. Applied Financial Economics, 2006, 16(10):717-729.[31] Frahm G, Junker M, Schmidt R. Estimating the tail-dependence coefficient:Properties and pitfalls[J]. Insurance:Mathematics and Economics, 2005, 37(1):80-100. |