[1] Bollerslev T. Generalized autoregressive conditional heteroskedasticity [J]. Journal of Econometrics,1986,31(3):307-327.[2] Bollerslev T. A conditional heteroskedastic time series model for speculative prices and rates of return [J]. Review of Economics and Statistics, 1987,69(3):542-547.[3] Hung J C, Lee M C, Liu H C. Estimation of Value-at-Risk for energy commodities via fat-tailed GARCH models [J]. Energy Economics,2008,30(3):1173-1191.[4] Theodossiou P. Financial data and the skewed generalized t distribution [J]. Management Science, 1998,(44):1650-1661.[5] Wilhelmsson A. GARCH forecasting performance under different distribution assumptions [J]. Journal of Forecasting,2006,(25):561-578.[6] Chuang I Y, Lu J R, Lee P H. Forecasting volatility in the financial markets: A comparison of alternative distributional assumptions [J]. Applied Financial Economics,2007, 17(3):1051-1060.[7] Nelson D B. Conditional heterskedasticity in asset returns: A new approach [J]. Econometrica,1991,59(12):347-370.[8] Glosten L, Jagannathan R, Runkle D. On the relation between the expected value and the volatility nominal excess return on stocks [J]. Journal of Finance,1993,48(5):1779-1801.[9] Engle R F, Ng V K. Measuring and testing the impact of news on volatility [J]. Journal of Finance, 1993,48(5): 1749-1778.[10] Taylor J W. Volatility forecasting with smooth transition exponential smoothing [J]. International Journal of Forecasting, 2004, 20(2): 273-286.[11] Loudon G F, Watt W H, Yadav P K. An empirical analysis of alternative parametric ARCH models [J]. Journal of Applied Econometrics,2000,15(2):117-136.[12] Evans T, McMillan D G. Volatility forecasts: The role of asymmetric and long-memory dynamics and regional evidence [J]. Applied Financial Economics, 2007,17(17):1421-1430.[13] Awartani B M A, Corradi V. Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries [J]. International Journal of Forecasting,2005,21(1): 167-183.[14] Brooks C, Persand G. Model choice and Value-at-Risk performance [J].Financial Analysts Journal, 2002,58(5): 87-97.[15] Sadorsky P. Modeling and forecasting petroleum futures volatility[J]. Energy Economics,2006,28(4):467-488.[16] 于亦文. 实际波动率与GARCH模型的特征比较分析 [J]. 管理工程学报,2006,20(2):65-69[17] 杨科,陈浪南. 中国股市高频波动率跳跃的特征分析 [J]. 系统工程学报,2012,27(4):492-497.[18] 张小斐,田金方.异质金融市场驱动的已实现波动率计量模型 [J]. 数量经济技术经济研究,2011,(9):140-153[19] 王良,冯涛. 中国ETF基金价格"已实现"波动率、跟踪误差之间的Granger关系研究 [J]. 中国管理科学,2012,20(1):59-70.[20] 刘伟,陈敏,梁斌.基于金融高频数据的ETF套利分析 [J].中国管理科学,2009,17(2):1-7.[21] Andersen T G, Bollerslev T, Meddahi N. Correcting the errors: Volatility forecast evaluation using high frequency data and realizedvolatilities [J], Econometrica, 2005, 73( 1) : 279-296. |