[1] Black F. Scholes M. The pricing of options and corporate liabilities[J]. Joumal of political Eco-nomy, 1973,81(3):133-155.[2] Fama E F. The behavior of stock market prices[J]. Journal of Business, 1965, 38(1): 34-105.[3] Mandelbrot B B. Fractional Brownian motions, fractional noises and applications[J]. SIAM review, 1968, 10(4): 422-437.[4] Mandelbrot B B. Fractals and scaling in finance: Discontinuity, concentration, risk[M]. New York: Springer Verlag, 1997.[5] Beben M, Ohowski A. Correlations in financial time series: Established versus emerging markets[J]. Eur. Phys. J.B, 2001, 20(4): 527-530.[6] Lo A W. Long term memory in stock market prices[J]. Econometria, 1991, 59(5):1279-1313.[7] Evertsz C J G. Fractal geometry of financial time series[J]. Fractals, 1995,3(3):609-616.[8] Necula C. Option pricing in a fractional Brownian motion environment[R].Working Paper, Academy of Economic Studies, 2002.[9] Xiao Weilin, Zhang Weiguo, Zhang Xili, et al. Pricing currency options in a fractional Brownian motion with jumps[J]. Economic Modelling, 2010, 27(5):935-942.[10] Gu Hui, Liang Jinrong, Zhang Yunxiu. Time-changed geometric fractional Brownian motion and option pricing with transaction costs[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391 (15):3971-3977.[11] Merton R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics,1976, 3(1):125-144.[12] 刘国买, 邹捷中,陈超.服从多种形式跳过程的期权定价模型[J].数量经济技术经济研究,2004,(4):110-114.[13] 黄学军,吴冲锋.不确定环境下研发投资决策的期权博弈模型[J].中国管理科学,2006,14(5):33-37.[14] Tsallis C.Possible generalization of Boltzmann-Gibbs statistics[J].Journal of Statistical Physics,1988,52(1):479-487.[15] Rak R, Drozdz S, Kwapień J.Non-extensive statistical features of the Polish stock market fluctuations[J].Physica A, 2007, 374(1): 315-324.[16] Kozaki M, Sato A H.Application of the Beck model to stock markets: Value-at-Risk and portfolio risk assessment[J]. Physica A, 2008, 387(5): 1225-1246.[17] Queirós S M D, Moyano L G, de Souza J, et al.A non-extensive approach to the dynamics of financial observables[J].The European Physical,2007, 55(2): 161-167.[18] Biró T S, Rosenfeld R, Journal B.Microscopic origin of non-Gaussian distributions of financial returns[J]. Physica A, 2008, 387(7): 1603-1612.[19] Ishizaki R,Inoue M. Time-series analysis of foreign exchange rates using time-dependent pattern entropy[J]. Physica A, 2013, 392(16):3344-3350.[20] Tapiero O J. A maximum (non-extensive) entropy approach to equity options bid-ask spread[J]. Physica A, 2013, 392(14): 3051-3060.[21] Borland L. A theory of non-Gaussian option pricing[J].Quantitative Finance, 2002, 2(6):415-431.[22] Katz Y A, Li Tian. q-Gaussian distributions of leverage returns, first stopping times, and default risk valuations[J]. Physica A, 2013, 392(20): 4989-4996. |