[1] Barndorff-Nielsen O E, Shephard N. Non-Gaussian OU based models and some of their uses in financial economics [J]. Journal of the Royal Statistical Society.Series B (Statistical Methodology), 2001a, 63(2): 167-241.[2] Barndorff-Nielsen O E.Shephard N. Modeling by Lévy Processes for Financial Econometrics[M]//Barndorff-Nielse O E, Mikosch T,Resnick S.Lévy Processes-Theory and Applications. Boston: Birkhauser, 2001b: 283-318.[3] Eraker B, Johannes M, Polson N. The impact of jumps in volatility and returns [J]. Journal of Finance, 2003, 58(3):1269-1300.[4] Elerian O, Chib S, Shephard N. Likelihood inference for discretely observed non-linear diffusions [J]. Econometrica, 2001, 69(4):959-993.[5] Jones C. Nonlinear mean reversion in the short-term interest rate [J]. The Review of Financial Studies, 2003, 16(3):793-843.[6] Roberts G O, Stramer O. On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm [J]. Biometrika, 2001, 88(3):603-621.[7] Li Haitao, Wells M T, Yu C L.A Bayesian analysis of returns dynamics with Lévy jumps [J]. Review of Financial Studies, 2008, 21(5): 2345-2378.[8] 朱慧明,黄超,郝立亚,等. 基于状态空间的贝叶斯跳跃厚尾金融随机波动模型研究[J].中国管理科学,2010,18(6):17-25.[9] Roberts G O, Papaspiliopoulos O, Dellaportas P.Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes[J].Journal of the Royal Statistical Society.Series B(Statistical Methodology), 2004, 66(2): 369-393.[10] Griffin J E, Steel M F J. Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility [J].Journal of Econometrics, 2006, 134(2):605-644.[11] Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination [J]. Biometrika, 1995, 82(4), 711-732.[12] Griffin J E, Steel M F J. Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes[J].Computational Statistics and Data Analysis, 2010,54(11):2594-2608.[13] Gander M P S, Stephens D A. Stochastic volatility modelling with general marginal distributions: Inference, prediction and model selection [J]. Journal of Statistical Planning and Inference, 2007a, 137(10):3068-3081.[14] Gander M P S, Stephens D A. Simulation and inference for stochastic volatility models driven by Lévy processes [J].Biometrika, 2007b, 94(3): 627-646.[15] Barndorff-Nielsen O E. Superposition of Ornstein-Uhlenbeck type processes [J]. Theory of Probability and its Applications, 2001, 45(2):175-194.[16] Cox D R, Isham V. Point processes [M]. London, UK: Chapman & Hall, 1988.[17] Black F. Studies of stock price volatility changes[C]. Proceedings of the Meetings of the Business & Economics Statistics, 1976:177-181.[18] Nelson D B. Conditional heteroskedasticity in asset return: a new approach [J].Econometrica, 1991, 59(2): 347-370. |