[1] Mandelbrot B. The variation of certain speculative prices [J]. The Journal of Business, 1963, 36(4): 394-419.[2] Fama E. The behavior of stock market prices [J]. Journal of Business, 1965, 38(1): 34-105.[3] Hagerman R. More evidence on the distribution of security returns [J]. Journal of Finance, 1978, 33(4): 1213-1221.[4] McDonald J B, Newey W K. Partially adaptive estimation of regression models via the generalized t distribution [J]. Econometric Theory, 1988, 4(3): 428-457.[5] Hansen B. Autoregressive conditional density estimation [J]. International Economic Review, 1994, 35(3): 705-730.[6] Theodossiou P. Financial data and the skewed generalized t distribution [J]. Management Science, 1998, 44(12): 1650-1661.[7] Cappuccio N, Lubian D, Raggi D. MCMC Bayesian estimation of a skew-GED stochastic volatility model [J]. Studies in Nonlinear Dynamics and Econometrics, 2004, 8(2): 1558-3708.[8] Engle R F. Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation [J]. Econometrica, 1982, 50(4): 987-1007.[9] Bollerslev T. Generalized autoregressive conditional heteroscedasticity [J]. Journal of Econometrics, 1986, 31(3): 307-327.[10] Giot P, Laurent S. Modelling daily Value-at-Risk using realized volatility and ARCH type models [J]. Journal of Empirical Finance, 2004, 11(3): 379-398.[11] Kuester K, Mittnik S, Paolella M S. Value-at-Risk prediction: A comparison of alternative strategies [J].Journal of Financial Econometrics, 2006, 4(1): 53-89.[12] 刘向丽, 成思危, 汪寿阳, 等. 期现货市场间信息溢出效应研究 [J]. 管理科学学报, 2008, 3(11): 125-139.[13] 魏宇. 股票市场的极值风险测度及后验分析研究 [J]. 管理科学学报, 2008, 11(1): 78-88.[14] 林宇, 卫贵武, 魏宇, 等. 基于Skew-t-FIAPARCH的金融市场动态风险VaR测度研究 [J]. 中国管理科学, 2009,17(6): 17-24.[15] Lee C F, Su J B. Alternative statistical distributions for estimating value-at-risk: Theory and evidence [J]. Review of Quantitative Finance and Accounting, 2012, 39(3): 309-331.[16] 王鹏, 魏宇, 王鸿. 沪深300股指期货的风险测度模型研究 [J]. 数理统计与管理, 2014, 33(4): 724-733.[17] 谢尚宇, 姚宏伟, 周勇. 基于ARCH-Expectile方法的VaR和ES尾部风险测量 [J]. 中国管理科学, 2014, 22(9): 1-9.[18] Dowd K. Estimating VaR with order statistics [J]. The Journal of Derivatives, 2001, 8(3): 23-30.[19] Scaillet O. Nonparametric estimation and sensitivity analysis of expected shortfall [J]. Mathematical Finance, 2004, 14(1): 115-129.[20] Chen Songxi, Tang Chengyong. Nonparametric inference of value at risk for dependent financial returns [J]. Journal of Financial Econometrics, 2005, 3(2): 227-255.[21] 叶五一, 缪柏其, 吴振翔. 基于收益率修正分布的VaR估计 [J]. 数理统计与管理, 2007, 26(5): 867-874.[22] Cai Zongwu, Wang Xian.Nonparametric estimation of conditional var and expected shortfall [J]. Journal of Econometrics, 2008, 147(1): 120-130.[23] 赵晓玲, 陈雪蓉, 周勇. 金融风暴中基于非参估计VaR和ES方法的风险度量 [J]. 数理统计与管理, 2012, 31(3): 381-383.[24] Koenker R, Zhao Quanshui. Conditional quantile estimation and inference of ARCH models [J]. Econometric Theory, 1996, 12(5): 793-813.[25] Wu Guojun, Xiao Zhijie. An analysis of risk measures [J]. Journal of Risk, 2002, 4(4): 53-75.[26] Fan Jianqing, Gijbels I. Data-driven bandwidth selection in local ploynomial fitting: variable bandwidth and spatial adaption [J]. Journal of the Royal Statistical Sotiety, Series B, 1995, 57(2): 371-394.[27] Yu Keming, Jones M C. Local linear quantile regression [J]. Journal of the American Statistical Association, 1998, 93(441): 228-237.[28] Peter C. Elements of financial risk management, second edition [M].Massachusetts,US: Academic Press, 2011.[29] Hendricks D. Evaluation of Value-at-Risk models using historical data [J]. Economic Policy Review, 1996, 2(4): 39-70.[30] Kupiec P H. Techniques for verifying the accuracy of risk measurement models [J]. Journal of Derivatives, 1995, 3(2): 73-84. |