主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2015, Vol. 23 ›› Issue (10): 1-10.doi: 10.16381/j.cnki.issn1003-207x.2015.10.001

• 论文 •    下一篇

双斜率因子动态Nelson-Siegel利率期限结构模型及其应用

沈根祥1,2, 陈映洲1   

  1. 1. 上海财经大学经济学院, 上海 200433;
    2. 上海财经大学数理经济学教育部重点实验室, 上海 200433
  • 收稿日期:2014-03-26 修回日期:2015-01-07 出版日期:2015-10-20 发布日期:2015-10-24
  • 作者简介:沈根祥(1964-),男(汉族),河南许昌人,上海财经大学教授,博士生导师,研究方向:金融计量学、金融市场数量分析.
  • 基金资助:

    教育部人文社会科学研究规划基金资助项目(13YJA790095);上海财经大学数理经济学教育部重点实验室开放课题资助(201301KF01);上海财经大学研究生创新基金资助(CXJJ-2013-359)

Nelson-Siegel Dynamic Term Structure Model with Double Slope Factors and Its Applications

SHEN Gen-xiang1,2, CHEN Ying-zhou1   

  1. 1. Economics School, Shanghai University of Finance and Economics, Shanghai 200433, China;
    2. Key Laboratory of Mathematical Economics, Ministry of Education, Shanghai University of Finance and Economics, Shanghai 200433, China
  • Received:2014-03-26 Revised:2015-01-07 Online:2015-10-20 Published:2015-10-24

摘要: 利率期限结构是利率产品定价的基础和核心,对利率市场化具有重要意义。根据我国债券市场的特点,本文对动态Nelson-Siegel模型进行扩展,引入第二个斜率因子,构造双斜率因子动态利率期限结构模型,增强收益率曲线近端的静态拟合和动态预测能力。本文提出的模型嵌套了动态Nelson-Siegel模型,是对动态Nelson-Siegel模型的实质性推广,极大似然比检验证明了第二个斜率因子引入的必要性。本文以状态空间模型的卡尔曼滤波构造样本似然函数,采用双折线优化算法计算模型参数的极大似然估计。基于我国银行间市场债券交易收益率数据的实证分析表明,双斜率因子模型能够显著改善动态Nelson-Siegel模型对收益率曲线近端的拟合能力,同时对短期预测能力也有改善。此外,第二个斜率因子反映出宏观经济活动对利率期限结构的滞后影响,扩展后的模型能捕捉我国利率期限结构更多的动态变化特征,给相关主体提供更具价值的参考信息。

关键词: 利率期限结构, Nelson-Siegel模型, 状态空间模型

Abstract: The four-factor dynamic term structure model is built up in this paper to improve substantially to widely used Nelson-Siegel model and tree-factor dynamic Nelson-Siege model. An additional slop factor is added to tree-factor dynamic model to make it more flexible in fitting and forecasting the short end of yield curve. Our model nests the three-factor dynamic Nelson-Siegel model as a special case and these two models can be compared directly by likelihood ratio. The model is formulated in state space form (6) and Kalman filtering is employed to construct likelihood. The empirical study is conducted using data from China interbank bond market and the conclusion shows that our double-slope-factor model can capture dynamics in short end of yield curve more accurately and then has a better fitting and forecasting performance than three-factor dynamic Nelson-Siegel model. The likelihood ratio test justifies the need of the additional slop factor. The model in the paper is an extension to those in the literature of term structure of interest rate and can be used in other empirical studies.

Key words: term structure of interest rate, Nelson-Siegel model, state space model

中图分类号: