[1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European journal of operational research, 1978, 2(6):429-444.[2] 王赫一,张屹两.两阶段DEA前沿面投影问题研究-兼对我国上市银行运营绩效进行评价[J].中国管理科学,2012,20(2):114-120.[3] Yang Xiaopeng, Morita H. Efficiency improvement from multiple perspectives:An application to Japanese banking Industry[J]. Omega, 2012, 41(3):501-509.[4] Azizi H, Wang Yingming. Improved DEA models for measuring interval efficiencies of decision-making units[J]. Measurement, 2012, 46(3):1325-1332.[5] 汪克亮,杨宝臣,杨力.中国省际能源利用的环境效率测度模型与实践研究[J].系统工程,2011,29(1):8-15[6] Azizi H. A note on data envelopment analysis with missing values:an interval DEA approach[J]. The International Journal of Advanced Manufacturing Technology, 2013,66(9):1817-1823.[7] 赵萌.中国制造业生产效率评价:基于并联决策单元的动态DEA方法[J].系统工程理论与实践,2012,32(6):1251-1260.[8] 杜娟,霍佳震.基于数据包络分析的中国城市创新能力评价[J].中国管理科学,2014,22(6):85-93.[9] Cook W D, Zhu J. Within-group common weights in DEA:An analysis of power plant efficiency[J]. European Journal of Operational Research, 2007, 178(1):207-216.[10] Banker R D, Charnes A, Cooper W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J]. Management science, 1984, 30(9):1078-1092.[11] Parkan C, Wang Yingming. The worst possible relative efficiency analysis based on inefficient production frontier. Working Paper, Department of Management Sciences, City University of Hong Kong, 2000.[12] Doyle J R, Green R H, Cook W D. Upper and lower bound evaluation of multiattribute objects:Comparison models using linear programming[J]. Organizational Behavior and Human Decision Processes, 1995, 64(3):261-273.[13] Entani T, Maeda Y, Tanaka H. Dual models of interval DEA and its extension to interval data[J]. European Journal of Operational Research, 2002, 136(1):32-45.[14] Wang Yingming, Yang Jianbo. Measuring the performances of decision-making units using interval efficiencies[J]. Journal of Computational and Applied Mathematics, 2007, 198(1):253-267.[15] Azizi H, Wang Yingming. Improved DEA models for measuring interval efficiencies of decision-making units[J]. Measurement, 2013, 46(3):1325-1332.[16] Azizi H, Jahed R. Improved data envelopment analysis models for evaluating interval efficiencies of decision-making units[J]. Computers & Industrial Engineering, 2011, 61(3):897-901.[17] Wang Yingming, Chin K S, Yang Jianbo. Measuring the performances of decision-making units using geometric average efficiency[J]. Journal of the Operational Research Society, 2006, 58(7):929-937.[18] Amirteimoori A. DEA efficiency analysis:Efficient and anti-efficient frontier[J]. Applied mathematics and Computation, 2007, 186(1):10-16.[19] 陆志鹏,王洁方,刘思峰,等.区间DEA模型求解算法及其在项目投资效率评价中的应用[J].中国管理科学,2009,17(4):165-169.[20] Wu Jie, Sun Jiasen, Song Malin, et al. A ranking method for DMUs with interval data based on dea cross-efficiency evaluation and topsis[J]. Journal of Systems Science and Systems Engineering, 2013,22(2):191-201.[21] Wang Yingming, Greatbanks R, Yang Jianbo. Interval efficiency assessment using data envelopment analysis[J]. Fuzzy sets and Systems, 2005, 153(3):347-370.[22] Azizi H, Ajirlu H G. Measurement of the worst practice of decision-making units in the presence of non-discretionary factors and imprecise data[J]. Applied Mathematical Modelling, 2011, 35(9):4149-4156.[23] 胡启洲,张卫华. 区间数理论研究及其应用[M]. 北京:科学出版社. 2010.[24] Qian Yuhua, Liang Jiye, Dang Chuangyin. Interval ordered information systems[J]. Computers & Mathematics with Applications, 2008, 56(8):1994-2009.[25] 宋鹏. 基于序化机理的稳健型股票价值投资研究. 太原:山西大学, 2012.[26] Wang Yingming, Luo Ying, Liang Liang. Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises[J]. Expert systems with applications, 2009, 36(3):5205-5211. |