[1] Armendariz B, Morduch J.The economics of microfinance[M]. 2nd, Cambridge, MA:MIT Press, 2010.[2] 郑毓盛, 于点默. 小额贷款的理论、实践和危机[J]. 中国农村经济, 2013, (8):88-95.[3] Banerjee A, Chandrasekhar A G, Duflo E, et al. The diffusion of microfinance[J]. Science, 2013,341(6144).[4] 庞素琳. 基于贷款风险损失比的农户信贷模型与应用[J]. 管理科学学报, 2012, 15(11):11-22.[5] Yang Jian, Zhou Yinggang. Credit risk spillovers among financial institutions around the global credit crisis:Firm-level evidence[J]. Management Science, 2013, 59(10):2343-2359.[6] Kruppa J, Schwarz A, Arminger G, et al. Consumer credit risk:Individual probability estimates using machine learning[J]. Expert Systems with Applications, 2013, 40(13):5125-5131.[7] 张大斌, 周志刚, 许职, 等. 基于差分进化自动聚类的信用风险评价模型研究[J]. 中国管理科学, 2015, 23(4):39-45.[8] 陈庭强, 何建敏. 基于复杂网络的信用风险传染模型研究[J]. 中国管理科学, 2014, 22(11):1-10.[9] Moges H T, Dejaeger K, Lemahieu W, et al. A multidimensional analysis of data quality for credit risk management:New insights and challenges[J]. Information & Management, 2013, 50(1):43-58.[10] Verbraken T, Bravo C, Weber R, et al. Development and application of consumer credit scoring models using profit-based classification measures[J]. European Journal of Operational Research, 2014, 238(2):505-513.[11] Li Yongbin, Zhang Jianping. Approach to multiple attribute decision making with hesitant triangular fuzzy information and their application to customer credit risk assessment[J]. Journal of Intelligent & Fuzzy Systems, 2014, 26(6):2853-2860.[12] Zhang Zhiwang, Gao Guangxia, Shi Yong. Credit risk evaluation using multi-criteria optimization classifier with kernel, fuzzification and penalty factors[J]. European Journal of Operational Research, 2014, 237(1):335-348.[13] Marqués A I, García V, Sánchez J S. A literature review on the application of evolutionary computing to credit scoring[J]. Journal of the Operational Research Society, 2013, 64(9):1384-1399.[14] Harris T. Credit scoring using the clustered support vector machine[J]. Expert Systems with Applications, 2015, 42(2):741-750.[15] Sun Zhongbin, Song Qinbao, Zhu Xiaoyan, et al. A novel ensemble method for classifying imbalanced data[J]. Pattern Recognition, 2015, 48(5):1623-1637.[16] Li Qiujie, Mao Yaobin.A review of boosting methods for imbalanced data classification[J]. Pattern Analysis and Applications, 2014, 17(4):679-693.[17] Chawla N V, Bowyer K W, Kegelmeyer W P. SMOTE:Synthetic Minority Over-sampling Technique[J]. Journal of Artificial Intelligence Research, 2002,16:321-357.[18] 陶新民, 郝思媛, 张冬雪,等. 基于样本特性欠取样的不均衡支持向量机[J]. 控制与决策, 2013, 28(7):978-984.[19] 文传军, 詹永照. 基于自调节分类面SVM的平衡不平衡数据分类[J]. 系统工程, 2009, 27(3):110-114.[20] 章少平, 梁雪春. 优化的支持向量机集成分类器在非平衡数据集分类中的应用[J]. 计算机应用, 2015, 35(5):1306-1309.[21] 邓乃杨, 田英杰. 支持向量机——理论、方法与拓展[M]. 北京:科学出版社, 2009.[22] Chang C C, Lin C J. LIBSVM:A library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011,2(3):1-27. |