主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2016, Vol. 24 ›› Issue (6): 106-114.doi: 10.16381/j.cnki.issn1003-207x.2016.06.013

• 论文 • 上一篇    下一篇

基于系统最优的城市公交专用道网络设计模型及算法

四兵锋, 杨小宝, 高亮   

  1. 北京交通大学城市交通复杂系统理论与技术教育部重点实验室, 北京 100044
  • 收稿日期:2014-11-07 修回日期:2015-10-21 出版日期:2016-06-20 发布日期:2016-07-05
  • 通讯作者: 四兵锋(1972-),男(汉族),河北邢台人,北京交通大学教授,研究方向:交通规划,E-mail:bfsi@bjtu.edu.cn. E-mail:bfsi@bjtu.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(71571013,71210001);科技部"973"项目(2012CB725400)

System Optimization based Bus-lane Network Design Model and Algorithm

SI Bing-feng, YANG Xiao-bao, GAO Liang   

  1. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China
  • Received:2014-11-07 Revised:2015-10-21 Online:2016-06-20 Published:2016-07-05

摘要: 设置公交专用道是实现"公交优先"的重要手段,然而,专用道设置将改变不同交通方式的道路通行能力,进而影响交通网络的整体性能。本文试图提出一种基于系统最优思想的公交专用道网络设计方法,既保证出行者的利益,又能满足交通系统总费用最优的目标。首先,本文分析了公交专用道设置对公交车辆和社会车辆这两种交通方式道路通行能力的影响,基于经典的BPR函数,构造了考虑专用道设置的不同方式的路段阻抗函数。其次,分析了出行者在多方式交通网络中的模式选择和路径选择问题,采用用户平衡理论分析了城市多方式交通平衡配流问题,给出了相应的变分不等式模型。更进一步,采用双层规划方法构造了基于系统最优的城市公交专用道网络设计模型,该模型以交通网络总费用最小为优化目标,并考虑了不同交通方式的平衡流量约束,采用分支定界算法对该双层规划模型进行求解。最后,通过一个简单算例对模型及算法的可行性和有效性进行了分析和验证。

关键词: 多方式, 公交专用道, 网络设计, 双层规划, 分支定界法

Abstract: It is one of the important means to set bus lane on certain roads for "bus priority" strategy, however, the road capacity for different means of transportation will be changed by setting bus lane. In this paper, the effects of bus lane on the travel times of buses and cars are analysed and then the corresponding travel cost functions are formulated while considering the change of road lanes. Simultaneously, the complex travelers' choice behaviors (including mode choice and route choice) are analyzed in urban multimodal network consisting of bus and car. A variational inequality model is proposed to describe user equilibrium assignment for such a system. Further, a bi-level model is proposed to describe the urban bus-lane network design problem, in which the minimum travel cost of whole system is regarded as optimization objective and the equilibrium flows of both bus and car on the road are considered. The branch and bound algorithm is also given for solving 0-1 bi-level programming. Finally, a numerical example is provided to illustrate the model and algorithm.

Key words: multimodal, bus lane, network design, bi-level programming, branch-and-bound method

中图分类号: