[1] Orgler Y E. A credit scoring model for commercial loans[J]. Journal of Money, Credit and Banking, 1970, 2(4):435-445.[2] 于立勇. 商业银行信用风险评估预测模型研究[J]. 管理科学学报, 2003, 6(5):46-52.[3] 王春峰, 万海晖. 基于神经网络技术的商业银行信用风险评估[J]. 系统工程理论与实践, 1999, 19(9):24-32.[4] Premachandra I M, Bhabra G S, Sueyoshi T. DEA as a tool for bankruptcy assessment:A comparative study with logistic regression technique[J]. European Journal of Operational Research, 2009, 193(2):412-424.[5] 李旭升, 郭春香, 郭耀煌. 扩展的树增强朴素贝叶斯网络信用评估模型[J]. 系统工程理论与实践, 2008, 28(6):129-136.[6] Laha A. Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring[J]. Advanced Engineering Informatics, 2007, 21(3):281-291.[7] 刘京礼, 李建平, 徐伟宣, 等. 信用评估中的鲁棒赋权自适应L_p最小二乘支持向量机方法[J]. 中国管理科学, 2010, 18(5):28-33.[8] 姚潇, 余乐安. 模糊近似支持向量机模型及其在信用风险评估中的应用[J]. 系统工程理论与实践, 2012, 32(3):549-554.[9] 吴冲, 夏晗. 基于支持向量机集成的电子商务环境下客户信用评估模型研究[J]. 中国管理科学, 2008, 16(S1):368-373.[10] 王春峰, 康莉. 基于遗传规划方法的商业银行信用风险评估模型[J]. 系统工程理论与实践, 2001, 21(2):73-79.[11] Chen Muchen, Huang S H. Credit scoring and rejected instances reassigning through evolutionary computation techniques[J]. Expert Systems with Applications, 2003, 24(4):433-441.[12] Marqués A I, García V, Sánchez J S. On the suitability of resampling techniques for the class imbalance problem in credit scoring[J]. Journal of the Operational Research Society, 2012, 64(7):1060-1070.[13] Schwenker F, Trentin E. Pattern classification and clustering:A review of partially supervised learning approaches[J]. Pattern Recognition Letters, 2014, 37(1):4-14.[14] Sugiyama M, Idé T, Nakajima S, et al. Semi-supervised local Fisher discriminant analysis for dimensionality reduction[J]. Machine Learning, 2010, 78(1-2):35-61.[15] Zhu Xiaojin. Semi-supervised learning literature survey[J]. Technical Report 1530, University of Wisconsin at Madison, 2006.[16] Zhang Yihao, Wen Junhao, Wang Xibin, et al. Semi-supervised learning combining co-training with active learning[J]. Expert Systems with Applications, 2014, 41(5):2372-2378.[17] Yang Tao, Fu Dongmei. Semi-supervised classification with Laplacian multiple kernel learning[J]. Neurocomputing, 2014, 140(9):19-26.[18] Xiao Jin, He Changzheng, Jiang Xiaoyi, et al. A dynamic classifier ensemble selection approach for noise data[J]. Information Sciences, 2010, 180(18):3402-3421.[19] Hansen L K, Salamon P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001.[20] Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Conference on Computational Learning Theory, ACM, New York, 1998.[21] Zhou Zhihua, Li Ming. Tri-training:Exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11):1529-1541.[22] 王娇, 罗四维, 曾宪华. 基于随机子空间的半监督协同训练算法[J]. 电子学报, 2008, 36(12):60-65.[23] 苏艳, 居胜峰, 王中卿, 等. 基于随机特征子空间的半监督情感分类方法研究[J]. 中文信息学报, 2012, 26(4):85-90.[24] Ho T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8):832-844.[25] Paleologo G, Elisseeff A, Antonini G. Subagging for credit scoring models[J]. European Journal of Operational Research, 2010, 201(2):490-499.[26] Merz C J, Murphy P. UCI repository of machine learning 820 databases[EB/OL]. 1995, http://www.ics.uci.edu/~mlearn/MLRepository.html.[27] Thomas L C, Edelman D B, Crook J N. Credit scoring and its applications[M].US:Siam, 2002.[28] Chen Feilong, Li Fengchia. Combination of feature selection approaches with SVM in credit scoring[J]. Expert Systems with Applications, 2010, 37(7):4902-4909. |