主管:中国科学院
主办:中国优选法统筹法与经济数学研究会
   中国科学院科技战略咨询研究院

中国管理科学 ›› 2016, Vol. 24 ›› Issue (6): 143-150.doi: 10.16381/j.cnki.issn1003-207x.2016.06.017

• 论文 • 上一篇    下一篇

区间信息下的主客方协作式群体评价方法及其应用

张发明, 李小霜   

  1. 南昌大学经济管理学院, 江西 南昌 330031
  • 收稿日期:2015-06-14 修回日期:2015-12-11 出版日期:2016-06-20 发布日期:2016-07-05
  • 通讯作者: 张发明(1980-),男(汉族),江西临川人,南昌大学经济管理学院赣江特聘教授,博士生导师,研究方向:综合评价与决策支持,E-mail:zfm1214@163.com. E-mail:zfm1214@163.com
  • 基金资助:

    国家自然科学基金资助项目(71361021,71001048,71261007);江西省教育厅科技资助重点项目(GJJ150027);江西省社学科学"十二五规划"重点项目(15ZQZD01);江西省学位与研究生教改研究重点项目(JXYJG-2014-002);江西省赣鄱英才555工程项目;江西省青年科学家(井岗之星)项目

A Group Evaluation Method and Application Based on Collaboration of Subject and Object under Interval Information

ZHANG Fa-ming, LI Xiao-shuang   

  1. School of Economics & Management, Nanchang University, Nanchang 330031, China
  • Received:2015-06-14 Revised:2015-12-11 Online:2016-06-20 Published:2016-07-05

摘要: 目前关于主客方协作式评价问题的研究相对较少且主要是基于点值评价信息的,考虑到评价环境的复杂性与不确定性,本文将点值信息向区间信息方向拓展,探讨了一种新的区间信息下的主客方协作式群体评价方法。本文首先探讨了一种能够较好融合评价信息"质与量"的区间诱导密度加权合成算子-IIDWA;然后以主方信息完备度及客方信息诚信度为诱导分量分别对主客方评价信息进行聚类分组,并从规模和属性两个角度出发分别确定相应的密度加权向量;最后在主客方协作规则下,利用IIDWA算子对主客方区间信息分别进行二维集结,以得出最终综合评价结果。文章最后给出了一个应用算例,算例表明了方法的可行性与有效性。

关键词: 区间数, 群体评价, IIDWA算子, 主客方, 协作

Abstract: In classical single criterion group evaluation methods, the ratings that experts (the subject) have given for the object evaluated are usually exact data. In addition, the evaluation process is also generally dominated by the subject with lack of the object participation. However, the ratings given are human judgements including preferences that may be vague; using interval data should be more suitable. Otherwise, with the circumstance of emphasizing democracy and freedom, participation of the object (especially when the object is human) in evaluation process is rather essential. Therefore, a group evaluation method based on collaboration of subject and object is put forward under interval information. In this paper, an Interval Induced Density Weighted Algorithm-IIDWA is presented to aggregate interval data. Firstly, completeness of subject information-μand integrity of object information-ωare calculated, by which original interval data are clustered into right group. Secondly, ultimate weight vector of each group are synthesized by their attribute weight vector-ξ? and scale weight vector-ξe, so it will possess the superiority of containing the characteristics of attribute and scale of each group. Finally, information of subject and object are aggregated respectively by IIDWAto obtain interval comprehensive results and then possibility degree approach of interval data is conducted for ranking. In the end, a numerical example is given to illustrate the feasibility and validity of this paper. Meanwhile, the result based on the TOPSIS method with interval data is also calculated in order to compare the existing difference with ranking of this paper. As the result of the two methods show, the ranking is different, which indicates that participation of the object can make contribution to the ranking result. In this paper, the complementation of the subject and object information has been implementated.

Key words: interval information, group evaluation, IIDWA operator, subject and object, collaboration

中图分类号: