[1] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952,7(1):77-91.[2] Markowitz H. Portfolio selection:Efficient diversification of investments[M]. New York:Wiley, 1959.[3] Deng Xiaotie, Li Zhongfei, Wang Shouyang. A minimax portfolio selection strategy with equilibrium[J]. European Journal of Operational Research, 2005, 166(1):278-292.[4] Hirschberger M, Qi Yue, Steuer R E. Randomly generating portfolio-selection covariance matrices with specified distributional characteristics[J]. European Journal of Operational Research, 2007, 177(3):1610-1625.[5] Grootveld H, Hallerbach W. Variance vs downside risk:Is there really that much difference?[J]. European Journal of Operational Research, 1999, 114(2):304-319.[6] Fama E F. Portfolio analysis in a stable paretian market[J]. Management Science, 1965,11(3):404-419.[7] Simkowitz M A, Beedles W L. Diversification in a three moment world[J]. Journal of Financial and Quantitative Annals, 1978,13(5):927-941.[8] Leung M T, Daouk H, Chen Ansing. Using investment portfolio return to combine forecasts:A multiobjective approach[J]. European Journal Operations Research, 2001,134(1):84-102.[9] Liu S C, Wang Shouyang, Qiu W H. Mean-variance-skewness model for portfolio selection with transaction costs[J]. International Journal Systems Science, 2003, 34(4):255-262.[10] Unser M. Lower partial moments as measures of perceived risk:An experimental study[J]. Journal of Economic Psychology, 2000, 21(3):253-280.[11] Rom B M, Ferguson K W. Post-modern portfolio theory comes of age[J]. Journal of Investing, 1994, 3(3):11-17.[12] Roy A D. Safety first and the holding of assets[J]. Econometrica, 1952, 20(3):431-449.[13] Huang Xiaoxia. Mean-semivariance models for fuzzy portfolio selection[J], Journal of Computational and Applied Mathematics, 2008, 217(1):1-8.[14] Markowitz H,Todd P,Xu Ganlin,et al. Computation of mean-semivariance efficient sets by the critical line algorithm[J]. Annals of Operations Research, 1993, 45(1):307-317.[15] Konno H, Wijayanayake A. Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints[J]. Mathematical Programming, 2001, 89(2):233-250.[16] Speranza M G. A heuristic algorithm for a portfolio optimization model applied to the Milan Stock Market[J]. Computers and Operations Research, 1996, 23(5):433-441.[17] Mansini R, Speranza M G. Heuristic algorithms for the portfolio selection problem with minimum transaction lots[J]. European Journal of Operational Research, 1999, 114(2):219-233.[18] Kellerer H, Mansini R, Speranza M G. Selecting portfolios with fixed costs and minimum transaction lots[J]. Annals of Operations Research, 2000, 99(1):287-304.[19] Lin Changchun, Liu Yiting. Genetic algorithms for portfolio selection problems with minimum transaction lots[J]. European Journal of Operational Research, 2008,185(1):393-404.[20] Soleimani H, Golmakani H R, Salimi M H. Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm[J]. Expert Systems with Applications, 2009, 36(3):5058-5063.[21] Golmakani H R, Fazel M. Constrained portfolio selection using particle swarm optimization[J]. Expert Systems with Applications, 2011, 38(7):8327-8335.[22] Mossion J. Optimal multiperiod portfolio policies[J]. Journal of Business, 1968, 41(2):215-229.[23] Hakansson N H. Multi-period mean-variance analysis:Toward a general theory of portfolio choice[J]. Journal of Finance, 1971, 26(4):857-884.[24] Li Duan, Chan T F, Ng W L. Safety-first dynamic portfolio selection[J]. Dynamics of Continuous, Discrete and Impulsive, Systems Series B:Applications and Algorithms, 1998,4(4):585-600.[25] Li Duan, Ng W L. Optimal dynamic portfolio selection:multiperiod mean-variance formulation[J]. Mathematical Finance, 2000,10(3):387-406.[26] Calafiore G C. Multi-period portfolio optimization with linear control policies[J]. Automatica, 2008, 44(10):2463-2473.[27] Zhu Shushang, Li Duan, Wang Shouyang. Risk control over bankruptcy in dynamic portfolio selection:a generalized mean-variance formulation[J]. IEEE Transactions on Automatic Control,2004,49(3):447-457.[28] Gülp?nar N, Rustem B. Worst-case robust decisions for multi-period mean-variance portfolio optimization[J]. European Journal of Operational Research, 2007,183(3):981-1000.[29] Yu Mei, Takahashi S, Inoue H, et al. Dynamic portfolio optimization with risk control for absolute deviation model[J]. European Journal of Operational Research, 2010, 201(2):349-364.[30] Çlikyurt U, Öekici S. Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach[J]. European Journal of Operational Research, 2007, 179(1):186-202.[31] Yan Wei, Li Shuyong. A class of multi-period semi-variance portfolio selection with a four-factor futures price model[J]. Journal of Applied Mathematics and Computing, 2009, 29(1):19-34.[32] Yan Wei, Miao Rong, Li Shurong. Multi-period semi-variance portfolio selection:Model and numerical solution[J]. Applied Mathematics and Computation, 2007, 194(1):128-134.[33] P?nar M Ç. Robust scenario optimization based on downside-risk measure for multi-period portfolio selection[J]. OR Spectrum, 2007, 29(2):295-309.[34] Zhang Weiguo, Liu Yongjun, Xu Weijun. A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs[J]. European Journal of Operational Research, 2012, 222(2):41-349.[35] Zhang Weiguo, Liu Yongjun, Xu Weijun. A new fuzzy programming approach for multi-period portfolio Optimization with return demand and risk control[J]. Fuzzy Sets and Systems, 2014, 246(1):107-126.[36] Liu Yongjun, Zhang Weiguo, Xu Weijun. Fuzzy multi-period portfolio selection optimization models using multiple criteria[J]. Automatica, 2012, 48(12):3042-3053.[37] Liu Yongjun, Zhang Weiguo, Zhang Pu. A multi-period portfolio selection optimization model by using interval analysis[J]. Economic Modelling, 2013, 33:113-119.[38] 袁子甲,李仲飞. 参数不确定性和效用最大化下的动态投资组合选择[J]. 中国管理科学,2010,18(5):1-6.[39] 金秀,王佳,高莹. 基于动态损失厌恶投资组合模型的最优资产配置与实证研究[J].2014, 22(5):16-23.[40] Deng Xue, Li Rongjun. A portfolio selection model with borrowing constraint based on possibility theory[J]. Applied Soft Computing, 2012, 12(2):754-758.[41] Sadjadi S J, Seyedhosseini S M, Hassanlou Kh. Fuzzy multi period portfolio selection with different rates for borrowing and lending[J]. Applied Soft Computing, 2011, 11(4):3821-3826.[42] Arnott R D, Wagner W H. The measurement and control of trading costs[J]. Financial Analysts Journal, 1990, 46(6):73-80.[43] Yoshimoto A. The mean-variance approach to portfolio optimization subject to transaction costs[J]. Journal of the Operational Research Society of Japan, 1996, 39(1):99-117.[44] Bertsimas D, Pachamanova D. Robust multiperiod portfolio management in the presence of transaction costs[J]. Computers and Operations Research, 2008, 35(1):3-17.[45] Gulp?nar N, Rustem B, Settergren R. Multistage stochastic mean-variance portfolio analysis with transaction cost[J]. Innovations, in Financial and Economic Networks, 2003,(3):46-63. |